

mos integrated circuit μ PD784044(A), 784046(A)

16-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD784046(A) is a model in the μ PD784046 subseries within the 78K/IV series. A stricter quality assurance program applies μ PD784046(A) compared to the μ PD784046 (standard model). (In terms of NEC's quality grading, this is a "special" grade product.)

The μ PD784046(A) is provided with many peripheral hardware functions such as ROM, RAM, I/O port, 10-bit resolution A/D converter, timer, serial interface, and interrupt functions, in addition to a high-speed, high-performance CPU.

The μ PD784046(A) is under development.

Moreover, a flash memory model, μ PD78F4046^{Note}, that can operate on the same supply voltage as the mask ROM model, and many development tools are under development.

Note Use for functional evaluation only.

The functions are described in detail in the following User's Manuals. Be sure to read these manuals when designing your system.

 μ PD784046 Subseries User's Manual - Hardware : U11515E 78K/IV Series User's Manual - Instruction : U10905E

FEATURES

Higher reliability compared to the μPD784044 and 784046

Minimum instruction execution time: 160 ns (with 12.5-MHz internal clock) ··· μPD784044(A), 784046(A)

200 ns (with 10-MHz internal clock) \cdots μ PD784044(A1), (A2),

784046(A1), (A2)

• I/O port : 65 lines

• Timer : 16-bit timer/counter \times 2 units

16-bit timer × 3 units

• A/D converter : 10-bit resolution × 16 channels

· Serial interface

UART/IOE (3-wire serial I/O) : 2 channelsWatchdog timer : 1 channel

Standby function

HALT/STOP/IDLE mode

• Supply voltage : $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$

APPLICATION FIELDS

Automotive appliances, etc.

In this document, in addition to the μ PD784044(A) and μ PD784046(A), the μ PD784044(A1), 784044(A2) 784046(A1), and 784046(A2) are also explained. However, unless otherwise specified, the μ PD784046(A) is treated as the representative model throughout this document.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package	Internal ROM (bytes)) Internal RAM (bytes)
μPD784044GC(A)-××-3B9	80-pin plastic QFP (14 $ imes$ 14 mm)	32 K	1024
μ PD784044GC(A1)-××-3B9	80-pin plastic QFP (14 \times 14 mm)	32 K	1024
μ PD784044GC(A2)-××-3B9	80-pin plastic QFP (14 \times 14 mm)	32 K	1024
μ PD784046GC(A)- $\times\times$ -3B9 ^{Note}	80-pin plastic QFP (14 \times 14 mm)	64 K	2048
μ PD784046GC(A1)- \times \times -3B9 ^{Note}	$^{\circ}$ 80-pin plastic QFP (14 $ imes$ 14 mm)	64 K	2048
μ PD784046GC(A2)-××-3B9 ^{Note}	80-pin plastic QFP (14 × 14 mm)	64 K	2048

Note Under development

Remark xxx indicates ROM code suffix.

QUALITY GRADE

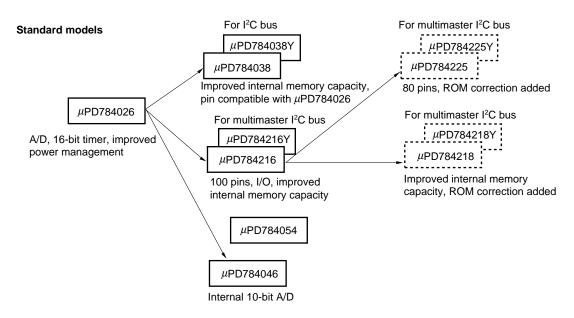
Special

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

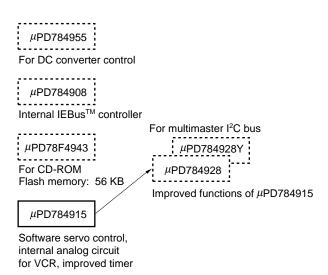
Differences between μ PD784046 and μ PD784046(A)

, , , , , , , , , , , , , , , , , , ,				
Part Number Item	μPD784044, 784046, 78F4046	μPD784044(A), 784046(A)		
Quality grade	Standard	Special		
Operating ambient temperature (TA)	–10 to +70 °C	-40 to +85 °C		
Operating frequency	8 to 32 MHz	8 to 25 MHz		
Minimum instruction execution time	125 ns (with 16-MHz internal clock)	160 ns (with 12.5-MHz internal clock)		
DC characteristics	V _{DD} supply current differs.			
AC characteristics	Bus timing and serial operation differ.			
A/D converter characteristics	Conversion time and sampling time differ.			

Differences between μ PD784046(A), 784046(A1) and 784046(A2)


Part Number Item	μPD784046(A)	μPD784046(A1)	μPD784046(A2)	
Operating ambient temperature (TA)	-40 to +85 °C	-40 to +110 °C	-40 to +125 °C	
Operating frequency	8 to 25 MHz	8 to 20 MHz		
Minimum instruction execution time	160 ns (with 12.5-MHz internal clock)	200 ns (with 10-MHz internal clock)		
DC characteristics	Analog pin input leakage retention current differ.	current, VDD supply currer	nt and data	
AC characteristics	Bus timing and serial operation differ.			
A/D converter characteristics	AVREF current and A/D co	ent and A/D converter data retention current differ.		

Remark The differences between μ PD784044(A), 784044(A1) and 784044(A2) is the same as above table.



Product Development of 78K/IV Series

: Under mass production
: Under development

ASSP models

3

FUNCTION LIST

Item Product		μPD784044(A)	μPD784046(A)		
Number of basic		113			
instructions (mnemonics)					
General-purpose register		8 bits \times 16 registers \times 8 banks, or 16 bits \times 8 registers \times 8 banks (memory mapping)			
Minimum	instruction	• 160 ns (with internal 12.5-MHz clock): μ	ιPD784044(A), 784046(A)		
execution	time	• 200 ns (with internal 10-MHz clock) : μPD784044(A1), (A2), 784046(A1), (A2)			
Internal	ROM	32K bytes	64 K bytes		
memory	RAM	1024 bytes	2048 bytes		
Memory s	space	1M bytes with program/data combined			
I/O port	Total	65 pins			
	Input	17 pins			
	I/O	48 pins			
Pins w	ith Pins with	29 pins			
ancilla					
functio	ns ^{Note} resistors				
	output port	4 bits × 1			
Timer/cou	ınter	Timer 0 : Timer register \times 1,	Pulse output possible		
		(16 bits) capture/compare regis			
			Set/reset output		
		Timer 1 : Timer register \times 1, (16 bits) : compare register \times 2	Pulse output possible • Toggle output		
		(10 bits) compare register x 2	Set/reset output		
		Timer/counter 2 : Timer register × 1,	Pulse output possible		
		(16 bits) compare register × 2	Toggle output		
		, , ,	PWM/PPG output		
		Timer/counter 3 : Timer register × 1,	Pulse output possible		
		(16 bits) compare register \times 2	 Toggle output 		
			PWM/PPG output		
		Timer 4 : Timer register \times 1,	Pulse output possible		
		(16 bits) compare register × 2	• Read-time output (4 bits × 1)		
A/D conve	erter	10-bit resolution × 16 channels			
Serial inte		UART/IOE (3-wire serial I/O): 2 channels	(with baud rate generator)		
Watchdoo	j timer	1 channel			
Interrupt	Hardware source	27 (internal: 23, external: 8 (internal/external: 4))			
	Software source	BRK instruction, BRKCS instruction, opera	and error		
	Non-maskable	Internal: 1, external: 1			
	Maskable	Internal: 22, external: 7 (internal/external: 4)			
		4 levels of programmable priorities			
		3 processing formats: vectored interrupt/macro service/context switching			
Bus sizing		8-bit/16-bit external data bus width selectable			
Standby		HALT/STOP/IDLE mode			
Supply vo	oltage	V _{DD} = 4.5 to 5.5 V			
Package		80-pin plastic QFP (14 × 14 mm)			

Note The pins with ancillary functions are included in the I/O pins.

CONTENTS

1.	DIF	FERENCES BETWEEN μ PD784044(A) AND 784046(A)	7
2.	PIN	CONFIGURATION (Top View)	8
3.	SYS	STEM CONFIGURATION EXAMPLE	10
4.	BLC	OCK DIAGRAM	11
5.	PIN	FUNCTIONS	12
	5.1	Port Pins	12
	5.2	Pins Other Than Port Pins	14
	5.3	I/O Circuits of Pins and Processing of Unused Pins	16
6.	СРІ	U ARCHITECTURE	18
	6.1	Memory Space	18
	6.2	CPU Registers	21
		6.2.1 General-purpose registers	21
		6.2.2 Control registers	22
		6.2.3 Special function registers (SFRs)	23
7.	PEF	RIPHERAL HARDWARE FUNCTIONS	29
	7.1	Ports	29
	7.2	Clock Generation Circuit	30
	7.3	Real-Time Output Port	32
	7.4	Timer/Counter	32
	7.5	A/D Converter	35
	7.6	Serial Interface	36
		7.6.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)	37
	7.7	Edge Detection Circuit	39
	7.8	Watchdog Timer	39
8.	INT	ERRUPT FUNCTION	40
	8.1	Interrupt Source	40
	8.2	Vectored Interrupt	42
	8.3	Context Switching	43
	8.4	Macro Service	44
9.	LO	CAL BUS INTERFACE	47
	9.1	Memory Expansion	48
	9.2	Memory Space	49
	9.3	Programmable Wait	49
	9.4	Bus Sizing Function	49

NEC

10. STANDBY FUNCTION	50
11. RESET FUNCTION	51
12. INSTRUCTION SET	52
13. ELECTRICAL SPECIFICATIONS	57
14. PACKAGE DRAWING	80
15. RECOMMENDED SOLDERING CONDITIONS	81
APPENDIX A. DEVELOPMENT TOOLS	82
APPENDIX B. RELATED DOCUMENTS	85

1. DIFFERENCES BETWEEN μ PD784044(A) AND 784046(A)

The only difference between the μ PD784044(A) and μ PD784046(A) is the internal memory capacity. The differences are shown in Table 1-1.

Table 1-1. Differences between μ PD784044(A) and 784046(A)

Part Number Item	μPD784044(A)	μPD784046(A)
Internal ROM	32K bytes (mask ROM)	64K bytes (mask ROM)
Internal RAM	1024 bytes	2048 bytes

2. PIN CONFIGURATION (Top View)

• 80-pin plastic QFP (14 × 14 mm) μ PD784044GC(A)-××-3B9, 784044GC(A1)-××-3B9, 784044GC(A2)-××-3B9 μ PD784046GC(A)-××-3B9^{Note}, 784046GC(A1)-××-3B9^{Note}, 784046(A2)-××-3B9^{Note}

Note Under development

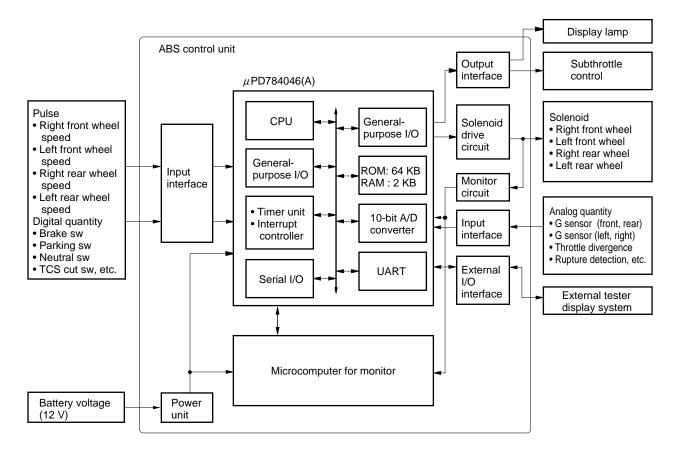
Caution Directly connect the MODE pin to Vss.

A16-A19 : Address Bus P50-P57 : Port5 AD0-AD15 : Address/Data Bus P60-P63 : Port6 : Port7 ANI0-ANI15 : Analog Input P70-P77 : Asynchronous Serial Clock ASCK, ASCK2 P80-P87 : Port8 **ASTB** : Address Strobe P90-P94 : Port9

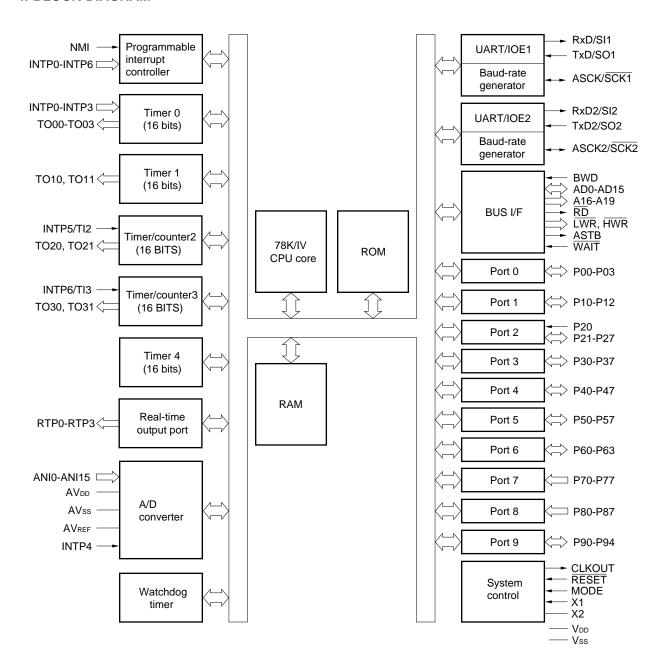
AVDD : Analog Power Supply $\overline{\text{RD}}$: Read Strobe AVREF : Analog Reference Voltage $\overline{\text{RESET}}$: Reset

AVss : Analog Ground RTP0-RTP3 : Real-Time Port

BWD : Bus Width Definition RxD, RxD2 : Receive Data CLKOUT : Clock Out SCK1,SCK2 : Serial Clock


HWR: High Address Write StrobeSI1, SI2: Serial InputINTP0-INTP6: Interrupt from PeripheralsSO1, SO2: Serial OutputLWR: Low Address Write StrobeTI2, TI3: Timer Input

MODE : Mode TO00-TO03, TO10, TO11,


NMI : Non-maskable Interrupt TO20,TO21,TO30,TO31 : Timer Output P00-P03 : Port0 TxD, TxD2 : Transmit Data P10-P13 : Port1 VDD : Power Supply

3. SYSTEM CONFIGURATION EXAMPLE (AC SERVO MOTOR CONTROL)

4. BLOCK DIAGRAM

Remark The internal ROM and RAM capacity differs depending on the products.

11

5. PIN FUNCTIONS

5.1 Port Pins (1/2)

Pin Name	I/O	Shared by:	Fun	ction
P00-P03	I/O	RTP0-RTP3	Port 0 (P0): • 4-bit I/O port • Can be set in input/output mode bit-wise. • Pins in input mode can all be connected to pull-up resistors at once via software.	
P10	I/O	TO20	Port 1 (P1):	
P11		TO21	4-bit I/O port	
P12		TO30	Can be set in input/output mode	bit-wise.
P13		TO31		
P20	Input	NMI	Port 2 (P2):	Input only
P21	I/O	INTP0/TO00	8-bit I/O port	Can be set in input/output mode
P22		INTP1/TO01		bit-wise.
P23		INTP2/TO02		
P24		INTP3/TO03		
P25		INTP4		
P26		INTP5/TI2		
P27		INTP6/TI3		
P30	I/O	TO10	Port 3 (P3):	
P31		TO11	8-bit I/O port	
P32		RxD/SI1	Can be set in input/output mode	bit-wise.
P33		TxD/SO1		
P34		ASCK/SCK1		
P35		RxD2/SI2		
P36		TxD2/SO2		
P37		ASCK2/SCK2		
P40-P47	I/O	AD0-AD7	Port 4 (P4): • 8-bit I/O port • Can be set in input/output mode bit-wise. • Pins in input mode can all be connected to pull-up resistors at once via software.	
P50-P57	I/O	AD8-AD15	Port 5 (P5): • 8-bit I/O port • Can be set in input/output mode bit-wise. • Pins in input mode can all be connected to pull-up resistors at once via software.	
P60-P63	I/O	A16-A19	Port 6 (P6): • 4-bit I/O port • Can be set in input/output mode bit-wise. • Pins in input mode can all be connected to pull-up resistors at once via software.	

5.1 Port Pins (2/2)

Pin Name	I/O	Shared by:	Function
P70-P77	Input	ANI0-ANI7	Port 7 (P7):
			8-bit input port
P80-P87	Input	ANI8-ANI15	Port 8 (P8):
			8-bit input port
P90	I/O	RD	Port 9 (P9):
P91		LWR	5-bit I/O port
P92		HWR	Can be set in input/output mode bit-wise.
P93		ASTB	Pins in input mode can all be connected to pull-up resistors at once
P94		WAIT	via software.

13

5.2 Pins Other Than Port Pins (1/2)

Pin Name	I/O	Shared by:	Function	
RTP0-RTP3	Output	P00-P03	Real-time output	
NMI	Input	P20	Non-maskable interr	rupt request input
INTP0		P21/TO00	External interrupt	Capture trigger signal of CC00
INTP1]	P22/TO01	request input	Capture trigger signal of CC01
INTP2]	P23/TO02		Capture trigger signal of CC02
INTP3		P24/TO03		Capture trigger signal of CC03
INTP4		P25		Conversion start trigger input of A/D converter
INTP5		P26/TI2		-
INTP6		P27/TI3		
TO00	Output	P21/INTP0	Timer output from t	imer/counter
TO01		P22/INTP1		
TO02		P23/INTP2		
TO03		P24/INTP3		
TO10		P30		
TO11		P31		
TO20		P10		
TO21	1	P11		
TO30	1	P12		
TO31	1	P13		
TI2	Input	P26/INTP5	External count clock	input to timer/counter 2
TI3		P27/INTP6	External count clock	c input to timer/counter 3
RxD	Input	P32/SI1	Serial data input (U	ARTO)
RxD2]	P35/SI2	Serial data input (U	ART2)
TxD	Output	P33/SO1	Serial data output (UART0)	
TxD2]	P36/SO2	Serial data output (l	JART2)
ASCK	Input	P34/SCK1	Baud rate clock inpu	ut (UART0)
ASCK2]	P37/SCK2	Baud rate clock inpu	ut (UART2)
SI1	Input	P32/RxD	Serial data input (3-	wire serial I/O1)
SI2		P35/RxD2	Serial data input (3-	wire serial I/O2)
SO1	Output	P33/TxD	Serial data output (3	3-wire serial I/O1)
SO2		P36/TxD2	Serial data output (3	3-wire serial I/O2)
SCK1	I/O	P34/ASCK	Serial clock input/ou	utput (3-wire serial I/O1)
SCK2		P37/ASCK2	Serial clock input/ou	utput (3-wire serial I/O2)
AD0-AD7	I/O	P40-P47	Lower multiplexed a	ddress/data bus when external memory is connected
AD8-AD15 ^{Note}	I/O	P50-P57	When 8-bit bus is	
			_	us when external memory is connected
			When external 16 Higher multiplexed	-bit bus is specified address/data bus when external memory is connected
A16-A19 ^{Note}	Output	P60-P63	-	when external memory is connected
RD	Output	P90	Read strobe to exte	
_ \\D	Output	1 30	Treat strong to exte	mai mamory

Note The number of pins used as address bus pins differs depending on the external address space (refer to **9. LOCAL BUS INTERFACE**).

5.2 Pins Other Than Port Pins (2/2)

Pin Name	I/O	Shared by:	Function
LWR	Output	P91	When external 8-bit bus is specified Write strobe to external memory When external 16-bit bus is specified Write strobe to external memory located at lower position
HWR		P92	Write strobe to external memory located at higher position when external 16-bit bus is specified
ASTB	Output	P93	Timing signal output to externally latch address information output from AD0 through AD15 pins to access external memory
WAIT	Input	P94	Inserts wait.
BWD	Input	_	Sets bus width.
MODE	Input	_	Directly connect this pin to Vss (this pin specifies test mode of IC).
CLKOUT	Output	_	Clock output. Outputs low level during IDLE mode and STOP mode. Otherwise, always outputs fxx (oscillation frequency).
X1	Input	_	Connect crystal for system clock oscillation (clock can be also input to X1).
X2	_	_	
RESET	Input	_	Chip reset
ANI0-ANI7	Input	P70-P77	Analog voltage input for A/D converter
ANI8-ANI15		P80-P87	
AVREF	_	_	Reference voltage for A/D converter
AVDD		_	Positive power supply for A/D converter
AVss		_	GND for A/D converter
V _{DD}		_	Positive power supply
Vss		_	GND

5.3 I/O Circuits of Pins and Processing of Unused Pins

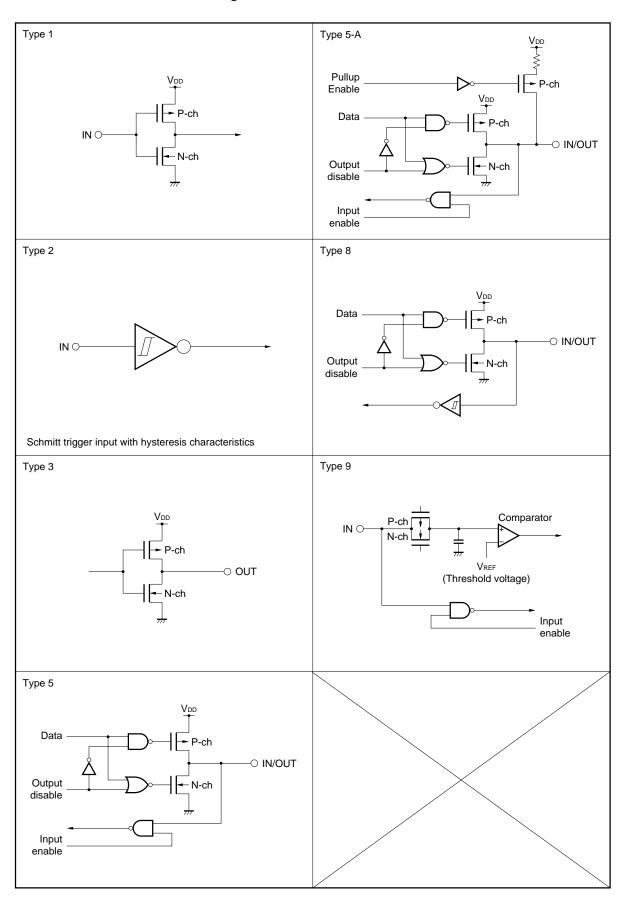

Table 5-1 shows the I/O circuit type of each pin and recommended processing of the unused pins. For the I/O circuit type, refer to **Figure 5-1**.

Table 5-1. I/O Circuit Type of Each Pin and Recommended Processing of Unused Pins

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/RTP0-P03/RTP3	5-A	I/O	Input: Individually connect to VDD or Vss via resistor.
P10-P12	5		Output: Leave unconnected.
P11/TO21			
P12/TO30			
P13/TO31			
P20/NMI	2	Input	Connect to Vss.
P21/INTP0/TO00	8	I/O	Input: Individually connect to VDD or Vss via resistor.
P22/INTP1/TO01			Output: Leave unconnected.
P23/INTP2/TO02			
P24/INTP3/TO03			
P25/INTP4			
P26/INTP5/TI2			
P27/INTP6/TI3			
P30/TO10	5		
P31/TO11			
P32/RxD/SI1			
P33/TxD/SO1			
P34/ASCK/SCK1	8		
P35/RxD2/SI2	5		
P36/TxD2/SO2			
P37/ASCK2/SCK2	8		
P40/AD0-P47/AD7	5-A		
P50/AD8-P57/AD15			
P60/A16-P63/A19			
P70/ANI0-P77/ANI7	9	Input	Connect to Vss.
P80/ANI8-P87/ANI15			
P90/RD	5-A	I/O	Input: Individually connect to VDD or Vss via resistor.
P91/LWR			Output: Leave unconnected.
P92/HWR			
P93/ASTB			
P94/WAIT			
MODE	1	Input	Directly connect to Vss.
RESET	2		-
CLKOUT	3	Output	Leave unconnected.
AVREF	_	_	Connect to Vss.
AVss			
AVDD			Connect to V _{DD} .

Remark The circuit type numbers are serial in the 78K series but are not always so with some models (because some models are not provided with particular circuits).

Figure 5-1. I/O Circuits of Pins

6. CPU ARCHITECTURE

6.1 Memory Space

A 1M-byte memory space can be accessed. The mapping of the internal data area (special function registers and internal RAM) can be selected by using the LOCATION instruction. The LOCATION instruction must be always executed after the reset signal has been deasserted, and must not be used more than once.

(1) When LOCATION 0 instruction is executed

· Internal memory

The internal data area and internal ROM area are as follows:

Product Name	Internal Data Area	Internal ROM Area
μPD784044(A)	0FB00H-0FFFFH	00000H-07FFFH
μPD784046(A)	0F700H-0FFFFH	00000H-0F5FFH

Caution 0F600H to 0FFFFH of the on-chip ROM (00000H to 0FFFFH) of the μ PD784046(A) cannot be used as ROM in execution of the LOCATION 0 instruction (refer to Figure 6-2).

· External memory

The external memory is accessed in the external memory expansion mode.

(2) When LOCATION 0FH instruction is executed

· Internal memory

The internal data area and internal ROM area are as follows:

Product Name	Internal Data Area	Internal ROM Area
μPD784044(A)	FFB00H-FFFFFH	00000H-07FFFH
μPD784046(A)	FF700H-FFFFFH	00000H-0FFFFH

· External memory

The external memory is accessed in the external memory expansion mode.

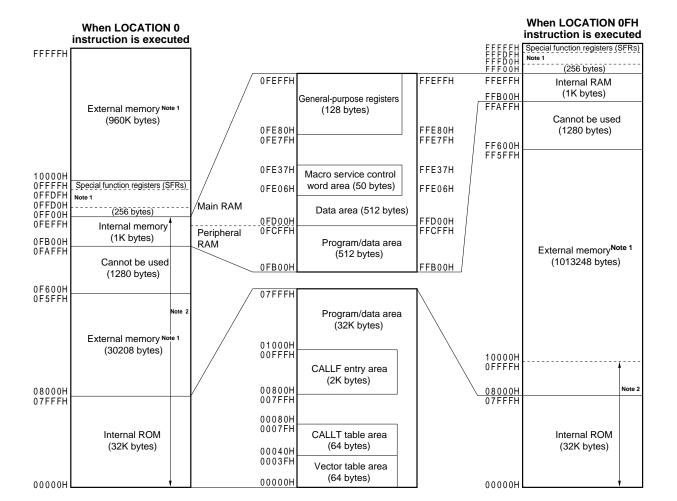


Figure 6-1. μ PD784044(A) Memory Map

- Notes 1. Accessed in the external memory expansion mode.
 - 2. Base area or entry area by reset or interrupt. The internal RAM is not reset.

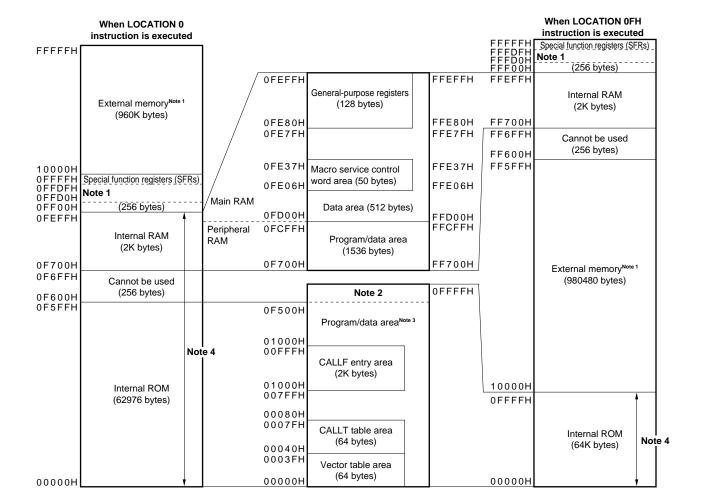


Figure 6-2. μ PD784046(A) Memory Map

- Notes 1. Accessed in the external memory expansion mode.
 - 2. 2560 bytes in this area can be used as inernal ROM only when the LOCATION 0FH instruction is executed.
 - **3.** When the LOCATION 0 instruction is executed: 62976 bytes When the LOCATION 0FH instruction is executed: 65536 bytes
 - 4. Base area or entry area by reset or interrupt. The internal RAM is not reset.

6.2 CPU Registers

6.2.1 General-purpose registers

Sixteen 8-bit general-purpose registers are provided. Two 8-bit general-purpose registers can be used in pairs as a 16-bit general-purpose register. Of the 16-bit registers, four can be used with an 8-bit register for address expansion as 24-bit address specification registers.

Eight banks of register sets are available which can be selected by software or context switching function.

The general-purpose registers except the V, U, T, and W registers for address expansion are mapped to the internal RAM.

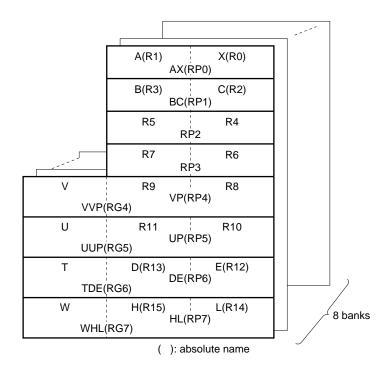


Figure 6-3. General-Purpose Register Format

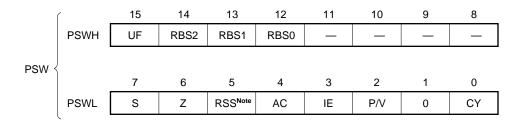
Caution R4, R5, R6, R7, RP2, and RP3 can be used as X, A, C, B, AX, and BC registers, respectively, by setting the RSS bit of the PSW to 1. However, use this function only when using a 78K/III series program.

21

6.2.2 Control registers

(1) Program counter (PC)

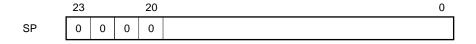
This is a 20-bit program counter. Its contents are automatically updated as the program is executed.


Figure 6-4. Program Counter (PC) Format

(2) Program status word (PSW)

This register retains the status of the CPU and its contents are automatically updated as the program is executed.

Figure 6-5. Program Status Word (PSW) Format


Note This flag is provided so that the μ PD784046(A) maintains compatibility with the 78K/III series. Be sure to clear this flag to 0 when using 78K/III series software.

(3) Stack pointer (SP)

This is a 24-bit pointer that holds the first address of the stack.

Be sure to write 0 to the high-order 4 bits of this pointer.

Figure 6-6. Stack Pointer (SP) Format

6.2.3 Special function registers (SFRs)

The special function registers are registers to which special functions are assigned, and include the mode registers and control registers of the internal peripheral hardware. These registers are mapped to a 256-byte space of addresses 0FF00H through 0FFFFHNote.

Note When the LOCATION 0 instruction is executed. FFF00H through FFFFH when the LOCATION 0FH instruction is executed.

Caution Do not access an address in this area to which no SFR is allocated. If an address to which no SFR is allocated is accessed by mistake, the μ PD784046(A) may be deadlocked. The deadlock status can be cleared only by inputting the reset signal.

Table 6-1 lists the special function registers. The meanings of the symbols in this table are as follows:

• ;	Symbol	Symbol indicating an SFR. These symbols are reserved for an NEC's assembler
		(RA78K4). With a C compiler (CC78K4), they can be used as sfr variables by
		using the #pragma sfr directive.
•	R/W	Indicates whether the corresponding SFR can be read/written.
		R/W: Read/write
		R : Read only
		W : Write only
•	Bit units for manipulation	Indicates bit units in which the corresponding SFR can be manipulated.
		SFRs that can be manipulated in 16-bit units can be written as operand sfrp.
		Specify the even addresses of these SFRs when specifying an address.
		SFRs that can be manipulated bit-wise can be written in bit manipulation
		instructions.

Table 6-1. Special Function Register List (1/5)

Address ^{Note 1}	Special Function Register (SFR) Name	Symbol	R/W	Bit units	for mani	On reset	
				1 bit	8 bits	16 bits	
0FF00H	Port 0	P0	R/W	0	0	_	Undefined
0FF01H	Port 1	P1		0	0	_	
0FF02H	Port 2	P2	Note 2	0	0	_	
0FF03H	Port 3	P3	R/W	0	0	_	
0FF04H	Port 4	P4		0	0	_	
0FF05H	Port 5	P5		0	0	_	
0FF06H	Port 6	P6		0	0	_	
0FF07H	Port 7	P7	R	0	0	_	
0FF08H	Port 8	P8		0	0	_	
0FF09H	Port 9	P9	R/W	0	0	_	
0FF0EH	Port 0 buffer register	P0L		0	0	_	
0FF10H	Timer register 0	TM0	R	_	-	0	0000H
0FF11H							
0FF12H	Capture/compare register 00	CC00	R/W	_	_	0	Undefined
0FF13H							
0FF14H	Capture/compare register 01	CC01		_	_	0	
0FF15H							
0FF16H	Capture/compare register 02	CC02		_	_	0	
0FF17H							
0FF18H	Capture/compare register 03	CC03		_	_	0	
0FF19H							
0FF1AH	Timer register 1	TM1	R	_	_	0	0000H
0FF1BH							
0FF1CH	Compare register 10	CM10	R/W	-	-	0	Undefined
0FF1DH							
0FF1EH	Compare register 11	CM11		_	-	0	
0FF1FH							
0FF20H	Port 0 mode register	PM0		0	0	_	FFH
0FF21H	Port 1 mode register	PM1		0	0	_	
0FF22H	Port 2 mode register	PM2 ^{Note 3}		0	0	_	
0FF23H	Port 3 mode register	PM3		0	0	_	
0FF24H	Port 4 mode register	PM4		0	0	_	
0FF25H	Port 5 mode register	PM5		0	0	_	
0FF26H	Port 6 mode register	PM6		0	0	_	
0FF29H	Port 9 mode register	PM9		0	0	-	
0FF2EH	Real-time output port control register	RTPC	7	0	0		00H
0FF2FH	Port read control register	PRDC		0	0	_	

Notes 1. When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

- 2. Bit 0 of P2 can only be read. Bit 1 can be read/written.
- 3. Bit 0 of PM2 is fixed to "1" by hardware.

Table 6-1. Special Function Register List (2/5)

AddressNote 1	Special Function Register (SFR) Name	Symbol	R/W	Bit units	for mani	pulation	On reset
				1 bit	8 bits	16 bits	
0FF30H	Timer unit mode register 0	TUM0	R/W	0	0	_	00H
0FF31H	Timer mode control register	TMC		0	0	-	
0FF32H	Timer output control register 0	TOC0		0	0	-	
0FF33H	Timer output control register 1	TOC1		0	0	_	
0FF34H	Timer unit mode register 2	TUM2		0	0	_	
0FF35H	Timer mode control register 2	TMC2		0	0	_	
0FF36H	Timer output control register 2	TOC2		0	0	_	
0FF37H	Timer mode control register 4	TMC4		0	0	_	
0FF38H	Prescaler mode register	PRM		_	0	_	
0FF39H	Prescaler mode register 2	PRM2		_	0	_	
0FF3AH	Prescaler mode register 4	PRM4		_	0	_	
0FF3BH	Noise protection control register	NPC		0	0	_	
0FF3CH	External interrupt mode register 0	INTM0]	0	0	_	
0FF3DH	External interrupt mode register 1	INTM1]	0	0	_	
0FF3EH	Interrupt valid edge flag register 1	IEF1]	0	0	_	Undefined
0FF3FH	Interrupt valid edge flag register 2	IEF2]	0	0	_	
0FF41H	Port 1 mode control register	PMC1]	0	0	_	00H
0FF42H	Port 2 mode control register	PMC2Note 2]	0	0	_	
0FF43H	Port 3 mode control register	PMC3]	0	0	_	
0FF49H	Port 9 mode control register	PMC9]	0	0	_	
0FF4EH	Pull-up resistor option register L	PUOL		0	0	_	
0FF4FH	Pull-up resistor option register H	PUOH]	0	0	_	
0FF50H	Timer register 2	TM2	R	-	-	0	0000H
0FF51H							
0FF52H	Compare register 20	CM20	R/W	-	-	0	Undefined
0FF53H							
0FF54H	Compare register 21	CM21		_	_	0	
0FF55H							
0FF56H	Timer register 3	TM3	R	-	-	0	0000H
0FF57H							
0FF58H	Compare register 30	CM30	R/W	-	-	0	Undefined
0FF59H							
0FF5AH	Compare register 31	CM31]	_	_	0	
0FF5BH							
0FF60H	Timer register 4	TM4	R	-	-	0	0000H
0FF61H							

Notes 1. When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

2. Bits 0, and 5 through 7 of PMC2 are fixed to "0" by hardware.

Table 6-1. Special Function Register List (3/5)

AddressNote	Special Function Register (SFR) Name	Symbol	R/W	Bit units	for mani	pulation	On reset
				1 bit	8 bits	16 bits	
0FF62H	Compare register 40	CM40	R/W	_	-	0	Undefined
0FF63H							
0FF64H	Compare register 41	CM41		_	_	0	
0FF65H							
0FF6EH	A/D converter mode register	ADM		0	0	_	00H
0FF70H	A/D conversion result register 0	ADCR0	R	_	_	0	Undefined
0FF71H							
0FF71H	A/D conversion result register 0H	ADCR0H		_	0	_	
0FF72H	A/D conversion result register 1	ADCR1		_	_	0	
0FF73H							
0FF73H	A/D conversion result register 1H	ADCR1H		_	0	_	
0FF74H	A/D conversion result register 2	ADCR2		_	_	0	
0FF75H							
0FF75H	A/D conversion result register 2H	ADCR2H		_	0	_	
0FF76H	A/D conversion result register 3	ADCR3		_	-	0	
0FF77H							
0FF77H	A/D conversion result register 3H	ADCR3H		_	0	_	
0FF78H	A/D conversion result register 4	ADCR4		_	-	0	
0FF79H							
0FF79H	A/D conversion result register 4H	ADCR4H		_	0	_	
0FF7AH	A/D conversion result register 5	ADCR5		_	-	0	Undefined
0FF7BH							
0FF7BH	A/D conversion result register 5H	ADCR5H		_	0	_	
0FF7CH	A/D conversion result register 6	ADCR6		_	-	0	
0FF7DH							
0FF7DH	A/D conversion result register 6H	ADCR6H		_	0	_	
0FF7EH	A/D conversion result register 7	ADCR7		_	_	0	
0FF7FH							
0FF7FH	A/D conversion result register 7H	ADCR7H		_	0	_	
0FF84H	Clocked serial interface mode register 1	CSIM1	R/W	0	0	_	00H
0FF85H	Clocked serial interface mode register 2	CSIM2		0	0	_	
0FF88H	Asynchronous serial interface mode register	ASIM		0	0	_	
0FF89H	Asynchronous serial interface mode register 2	ASIM2		0	0	_	
0FF8AH	Asynchronous serial interface status register	ASIS	R	0	0	_	
0FF8BH	Asynchronous serial interface status register 2	ASIS2		0	0	_	

Note When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

Table 6-1. Special Function Register List (4/5)

AddressNote 1	Special Function Register (SFR) Name	Symbol	R/W	Bit units for manipulation		pulation	On reset
				1 bit	8 bits	16 bits	
0FF8CH	Serial receive buffer: UART0	RXB	R	_	0	_	Undefined
	Serial transmit shift register: UART0	TXS	W	_	0	_	
	Serial shift register: IOE1	SIO1	R/W	_	0	_	
0FF8DH	Serial receive buffer: UART2	RXB2	R	_	0	_	
	Serial transmit shift register: UART2	TXS2	W	_	0	_	
	Serial shift register: IOE2	SIO2	R/W	_	0	_	
0FF90H	Baud rate generator control register	BRGC		_	0	_	00H
0FF91H	Baud rate generator control register 2	BRGC2		_	0	_	
0FFA8H	In-service priority register	ISPR	R	0	0	_	
0FFAAH	Interrupt mode control register	IMC	R/W	0	0	_	80H
0FFACH	Interrupt mask register 0L	MK0L		0	0	_	FFH
0FFACH	Interrupt mask register 0	MK0		_	-	0	FFFFH
0FFADH							
0FFADH	Interrupt mask register 0H	MK0H		0	0	_	FFH
0FFAEH	Interrupt mask register 1L	MK1L		0	0	_	
0FFAEH	Interrupt mask register 1	MK1		_	_	0	FFFFH
0FFAFH							
0FFAFH	Interrupt mask register 1H	MK1H		0	0	_	FFH
0FFC0H	Standby control registerNote 2	STBC		_	0	_	30H
0FFC2H	Watchdog timer mode registerNote 2	WDM		_	0	_	00H
0FFC4H	Memory expansion mode register	MM		0	0	_	20H
0FFC7H	Programmable wait control register 1	PWC1		_	0	_	AAH
0FFC8H	Programmable wait control register 2	PWC2		_	-	0	AAAAH
0FFC9H							
0FFCAH	Bus width specification register	BW		_	-	0	Note 3
0FFCBH							
0FFCFH	Oscillation stabilization time specification register	OSTS		_	0	_	00H
0FFD0H- 0FFDFH	External SFR area	_		0	0	_	Undefined
0FFE0H	Interrupt control register (INTOV0)	OVIC0		0	0	_	43H
0FFE1H	Interrupt control register (INTOV1)	OVIC1		0	0	_	
0FFE2H	Interrupt control register (INTOV4)	OVIC4		0	0	_	
0FFE3H	Interrupt control register (INTP0)	PIC0		0	0	_	
0FFE4H	Interrupt control register (INTP1)	PIC1		0	0	_	
0FFE5H	Interrupt control register (INTP2)	PIC2	1	0	0	_	

Notes 1. When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

- **2.** These registers can be written only by using dedicated instructions MOV STBC, #byte and MOV WDM, #byte, and cannot be written by any other instructions.
- 3. The value of this register on reset differs depending on the setting of the BWD pin.

BWD = 0: 0000H

BWD = 1: 00FFH

Table 6-1. Special Function Register List (5/5)

AddressNote	Special Function Register (SFR) Name	Symbol	R/W	Bit units for manipulation			On reset
				1 bit	8 bits	16 bits	
0FFE6H	Interrupt control register (INTP3)	PIC3	R/W	0	0	_	43H
0FFE7H	Interrupt control register (INTP4)	PIC4		0	0	_	
0FFE8H	Interrupt control register (INTP5)	PIC5		0	0	_	
0FFE9H	Interrupt control register (INTP6)	PIC6		0	0	_	
0FFEAH	Interrupt control register (INTCM10)	CMIC10		0	0	_	
0FFEBH	Interrupt control register (INTCM11)	CMIC11		0	0	_	
0FFECH	Interrupt control register (INTCM20)	CMIC20		0	0	_	
0FFEDH	Interrupt control register (INTCM21)	CMIC21		0	0	_	
0FFEEH	Interrupt control register (INTCM30)	CMIC30		0	0	_	
0FFEFH	Interrupt control register (INTCM31)	CMIC31		0	0	_	
0FFF0H	Interrupt control register (INTCM40)	CMIC40		0	0	_	
0FFF1H	Interrupt control register (INTCM41)	CMIC41		0	0	_	
0FFF2H	Interrupt control register (INTSER)	SERIC		0	0	_	
0FFF3H	Interrupt control register (INTSR)	SRIC		0	0	_	
	Interrupt control register (INTCSI1)	CSIIC1		0	0	_	
0FFF4H	Interrupt control register (INTST)	STIC		0	0	_	
0FFF5H	Interrupt control register (INTSER2)	SERIC2		0	0	_	
0FFF6H	Interrupt control register (INTSR2)	SRIC2		0	0	_	
	Interrupt control register (INTCSI2)	CSIIC2		0	0	_	
0FFF7H	Interrupt control register (INTST2)	STIC2		0	0	_	
0FFF8H	Interrupt control register (INTAD)	ADIC		0	0	-	

Note When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

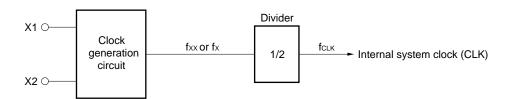
7. PERIPHERAL HARDWARE FUNCTIONS

7.1 Ports

The μ PD784046(A) has the ports shown in Figure 7-1. These ports can be used for various control operations. The function of each port is shown in Table 7-1. Ports 0, 4 through 6, and 9 can be connected to an internal pull-up resistor via software when they are set in the input mode.

P50 P00 Port 0 P03 Port 5 P10 Port 1 P57 Pĺ3 P60 P20 Port 6 P63 Port 2 P27 P70-P77 8 Port 7 P30 Port 3 P37 P80-P87 8 Port 8 P40 Port 4 P90 Port 9 P47 P94

Figure 7-1. Port Configuration

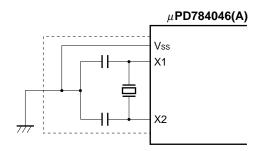

Table 7-1. Port Function

Port Name	Pin Name	Function	Specification of Pull-Up Resistor by Software
Port 0	P00-P03	Can be set in input or output mode bit-wise.	All pins in input mode
Port 1	P10-P13		_
Port 2	P20-P27	Can be set in input or output mode bit-wise	
		(however, P20 is input-only).	
Port 3	P30-P37	Can be set in input or output mode bit-wise.	
Port 4	P40-P47		All pins in input mode
Port 5	P50-P57		
Port 6	P60-P63		
Port 7	P70-P77	Input port	_
Port 8	P80-P87		
Port 9	P90-P94	Can be set in input or output mode bit-wise.	All pins in input mode

7.2 Clock Generation Circuit

The clock generation circuit generates and controls the internal system clock (CLK) to be supplied to the CPU. Figure 7-2 shows the configuration of this circuit.

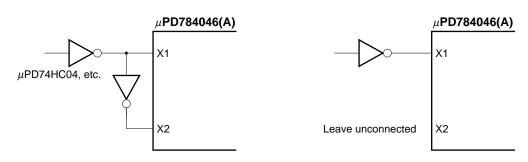
Figure 7-2. Block Diagram of Clock Generation Circuit


Remark fxx: crystal/ceramic oscillation frequency

fx : external clock frequency

fclk: internal system clock frequency

Figure 7-3. Example of Using Oscillation Circuit


(1) Crystal/ceramic oscillation

(2) External clock input

(a) EXTC bit of OSTS = 1

(b) EXTC bit of OSTS = 0

Caution When using the clock oscillation circuit, wire the portion enclosed by the dotted line in the above figure as follows to avoid adverse effects of wiring capacitance.

- · Keep the wiring length as short as possible.
- · Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

7.3 Real-Time Output Port

The real-time output port outputs the data stored in the buffer in synchronization with a match interrupt of timer 4. This allows jitter-less pulse output to be obtained.

Therefore, it is best suited to applications that output patterns at given intervals (such as stepping motor open loop control,etc.).

As shown in Figure 7-4, port 0 and the port 0 buffer register form the core of configuration.

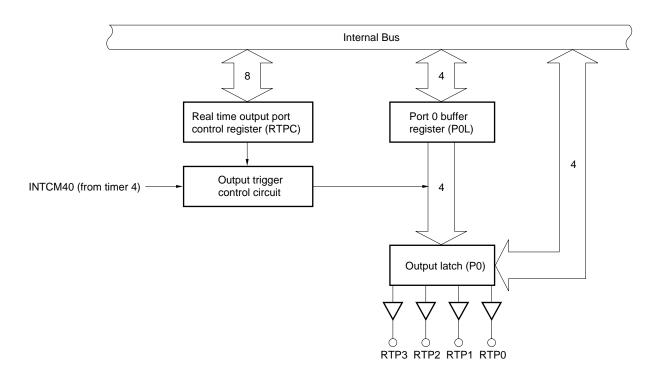
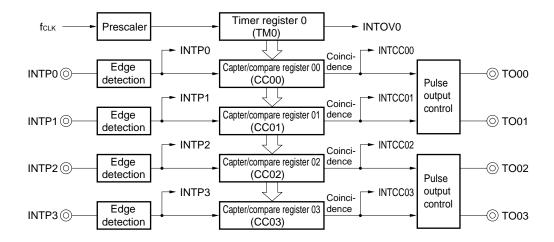


Figure 7-4. Block Diagram of Real-Time Output Port

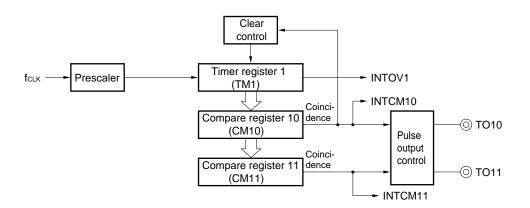
7.4 Timer/Counter

The μ PD784046(A) contains two 16-bit timer/counter units and three 16-bit timer units.


These units support a total of 15 interrupt requests, which enable them to function as 15-channel timers.

lt a see	_	Name	Timer 0	Timer 1	Timer/	Timer/	Timer 4
Item					Counter2	Counter 3	
Operating mode	Ir	terval timer	4ch	2ch	2ch	2ch	2ch
	Е	xternal event counter	1	1	0	0	_
Function	Т	imer output	4ch	2ch	2ch	2ch	-
		Toggle output	0	0	0	0	-
		Set/reset output	0	0	_	-	-
		PWM/PPG output	_	-	0	0	-
	R	eal-time output	-	-	-	_	0
	0	verflow interrupt	0	0	_	_	0
	N	umber of interrupt requests	5	3	2	2	3

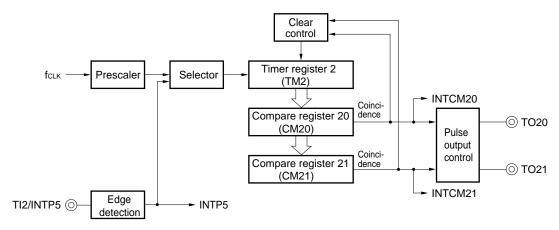
Table 7-2. Timer/Counter Function


Figure 7-5. Block Diagram of Timer/Counter (1/2)

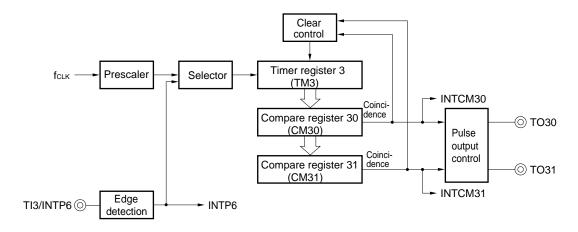
Timer 0

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

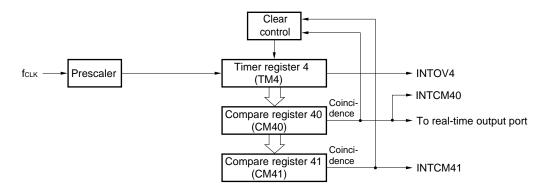
Timer 1



Prescaler: fclk/8, fclk/16, fclk/32, fclk/64, fclk/128


Figure 7-5. Block Diagram of Timer/Counter (2/2)

Timer/counter 2


Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

Timer/counter 3

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

Timer 4

Prescaler: fclk/4, fclk/8, fclk/16, fclk/32, fclk/64

7.5 A/D Converter

The μ PD784046(A) has an analog-to-digital (A/D) converter with 16 multiplexed analog input pins (ANI0 through ANI15).

This converter is of successive approximation type. The result of conversion is stored to and retained in 10-bit A/D conversion result registers (ADCR0-ADCR7). Therefore, high-speed, high-accuracy conversion can be performed (conversion time: about 13.5 μ s: fclk = 12.5 MHz).

The A/D conversion operation can be started in the following modes:

- Hardware start: Conversion is started by trigger input (INTP4).
- Software start: Conversion is started by setting a bit of the A/D converter mode register (ADM).

The A/D converter operates in the following modes:

• Scan mode : Sequentially selects two or more analog input pins to obtain data to be converted from all the pins.

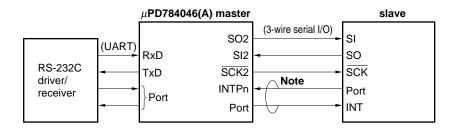
Select mode : Selects only one analog input pin to obtain successive conversion values.

The above modes and stopping the conversion are specified by ADM.

When the result of conversion is transferred to ADCRn (n = 0-7), interrupt request INTAD is generated. By using this interrupt request and by using macro service, the converted value can be successively transferred to memory.

ANI0 O ANI1 O ANI2 O Input ANI3 O ANI4 O selecto Series resistor string ANI5 O Sample & hold circuit ANI6 O ○ AV_{REF} ANI7 O R/2 \{ ANI8 O ANI9 O R \prod Voltage Fap selector ANITO O comparator Input ANI11 O ANI12 O selecto ANI13 O Successive approximation ANI14 O register (SAR) ANI15 O Conversion R/2 ≶ Edge rigger INTAD Control O AVss INTP4 O detection circuit circuit 10 Trigger enable ADCR0 ADCR1 ADCR2 A/D converter mode register ADCR3 A/D conversion result register (ADM) ADCR4 ADCR5 ADCR6 8 ADCR7 10 Internal bus

Figure 7-6. Block Diagram of A/D Converter


7.6 Serial Interface

The μ PD784046(A) is provided with two independent serial interface channels.

• Asynchronous serial interface (UART)/3-wire serial I/O (IOE) \times 2

By using these serial interface channels, communication with an external device and local communication within a system can be performed at the same time (refer to **Figure 7-7**).

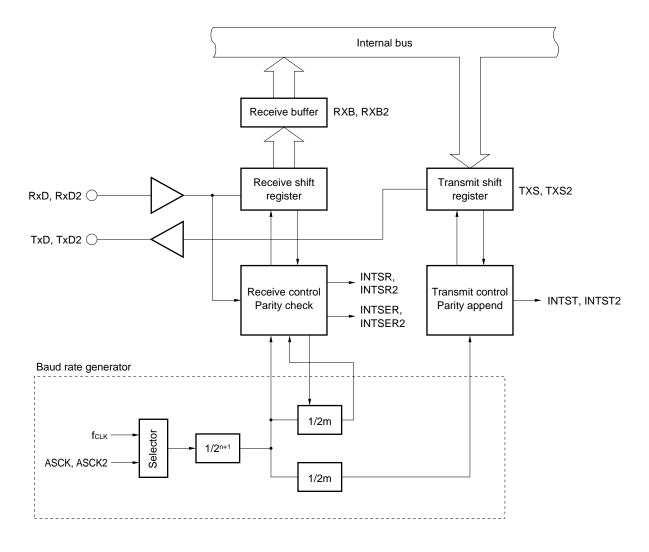
Figure 7-7. Example of Serial Interface

Note Handshake line

7.6.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)

Two serial interface channels from which asynchronous serial interface mode and three-wire serial I/O mode can be selected are provided.

(1) Asynchronous serial interface mode


In this mode, 1-byte data following a start bit is transferred or received.

The internal baud rate generator allows communication in a wide range of baud rates.

The clock input to the ASCK pin can also be divided to define a baud rate.

The baud rate generator can also set a baud rate conforming to the MIDI standard (31.25 kbps).

Figure 7-8. Block Diagram in Asynchronous Serial Interface Mode

Remark fclk: internal system clock

n = 0 to 11m = 16 to 30

(2) 3-wire serial I/O mode

This mode is to start transmission when the master device makes a serial clock active and to communicate 1-byte data in synchronization with this clock.

The interface in this mode communicates with devices that have conventional clocked serial interface. Basically, communication is performed by using three lines: serial clock (\overline{SCK}) and two serial data (SI and SO) lines. To connect two or more devices, a handshake line is necessary.

Internal bus Direction control circuit SIO1, SIO2 SI1, SI2C Shift register Output latch SO1, SO2(INTCSI1, Interrupt SCK1, SCK2 Serial clock counter INTCSI2 generation circuit 1/2m 1/2n+1 fclk Selector Serial clock control circuit

Figure 7-9. Block Diagram in 3-Wire Serial I/O Mode

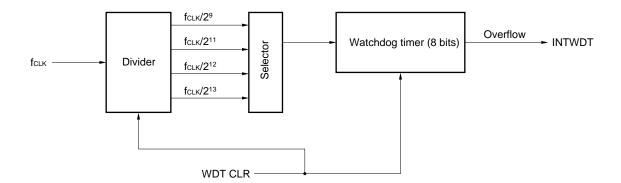
Remark fclk: internal system clock

n = 0 to 11

m = 1, 16 to 30

7.7 Edge Detection Circuit

The interrupt input pins (NMI and INTP0 through INTP6) input not only interrupt requests but also trigger signals of the internal hardware. Because all the interrupts and internal hardware operate by detecting specific edges of the input signals, a function to detect edges is provided. In addition, a noise rejection function is also provided to prevent detection of a wrong edge due to noise.


Pin	Detectable Edge	Noise Rejected by:		
NMI	Either rising or falling edge	Analog delay		
INTP0-INTP6	Either rising or falling edge, or both edges	Clock sampling ^{Note}		

Note A sampling clock can be selected.

7.8 Watchdog Timer

A watchdog timer is provided to detect a hang-up of the CPU. This watchdog timer generates a non-maskable interrupt unless it is cleared by software within a specified interval time. Once the watchdog timer has been enable to operate, its operation cannot be stopped by software. Moreover, it can be specified whether the interrupt by the watchdog timer or the interrupt from the NMI pin takes precedence.

Figure 7-10. Block Diagram of Watchdog Timer

8. INTERRUPT FUNCTION

The three types of interrupt processing shown in Table 8-1 can be selected.

Table 8-1. Interrupt Request Processing

Processing Mode	Processed by:	Processing	Contents of PC and PSW
Vectored interrupt	Software	Branches to and executes processing routine (any processing contents).	Saves and restores to/from stack.
Context switching		Automatically selects register bank, and branches to and executes processing routine (any processing contents).	Saves or restores to/from fixed area in register bank.
Macro service	Firmware	Executes data transfer between memory and I/O (any processing contents).	Retained

8.1 Interrupt Source

As interrupt sources, twenty-seven sources listed in Table 8-2, BRK instruction execution, and operand error are available.

Four priority levels of interrupt processing can be selected, so that nesting during interrupt processing and the levels of interrupt requests that are generated at the same time can be controlled. However, nesting always advances with macro service (i.e., nesting is not kept pending).

The default priority is the priority (fixed) of the processing for the interrupt requests that have occurred at the same time and have the same priority level (refer to **Table 8-2**).

Table 8-2. Interrupt Sources

Туре	Default		Source	Internal/	Macro
	Priority	Name	Trigger	External	Service
Software	_	BRK instruction BRKCS instruction	Execution of instruction	-	_
		Operand error	If result of exclusive OR of operands byte and byte is not FFH when MOV STBC, #byte, MOV WDM, #byte, or LOCATION instruction is executed		
Non-	-	NMI	Detection of pin input edge	External	
maskable		INTWDT	Overflow of watchdog timer	Internal	
Maskable	0 (highest)	INTOV0	Overflow of timer 0		0
	1	INTOV1	Overflow of timer 1		
	2	INTOV4	Overflow of timer 4		
	3	INTP0	Detection of pin input edge (CC00 capture trigger)	External	
		INTCC00	Generation of TM0-CC00 coincidence signal	Internal	
	4	INTP1	Detection of pin input edge (CC01 capture trigger)	External	
		INTCC01	Generation of TM0-CC01 coincidence signal	Internal	
	5	INTP2	Detection of pin input edge (CC02 capture trigger)	External	
		INTCC02	Generation of TM0-CC02 coincidence signal	Internal	
	6	INTP3	Detection of pin input edge (CC03 capture trigger)	External	
		INTCC03	Generation of TM0-CC03 coincidence signal	Internal	
	7	INTP4	Detection of pin input edge	External	
			(A/D converter conversion start trigger)		
	8	INTP5	Detection of pin input edge (TM2 event counter input)		
	9	INTP6	Detection of pin input edge (TM3 event counter input)		
	10	INTCM10	Generation of TM1-CM10 coincidence signal	Internal	
	11	INTCM11	Generation of TM1-CM11 coincidence signal		
	12	INTCM20	Generation of TM2-CM20 coincidence signal		
	13	INTCM21	Generation of TM2-CM21 coincidence signal		
	14	INTCM30	Generation of TM3-CM30 coincidence signal		
	15	INTCM31	Generation of TM3-CM31 coincidence signal		
	16	INTCM40	Generation of TM4-CM40 coincidence signal		
	17	INTCM41	Generation of TM4-CM41 coincidence signal		
	18	INTSER	Occurrence of UART0 reception error		
	19	INTSR	End of UART0 reception		
		INTCSI1	End of 3-wire serial I/O1 transfer		
	20	INTST	End of UART0 transfer		
	21	INTSER2	Occurrence of UART2 reception error		
	22	INTSR2	End of UART2 reception		
		INTCSI2	End of 3-wire serial I/O2 transfer		
	23	INTST2	End of UART2 transfer		
	24 (lowest)	INTAD	End of A/D converter conversion (transfer to ADCR)		

8.2 Vectored Interrupt

Execution branches to a processing routine by using the memory contents of the vector table address corresponding to an interrupt source as the branch destination address.

The following operations are performed so that the CPU processes the interrupt:

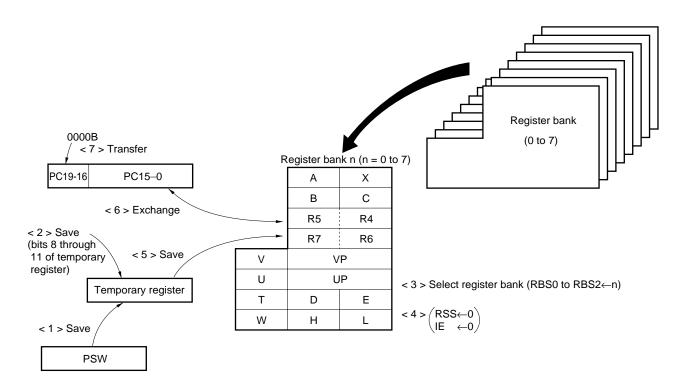
• On branch : Saves status of CPU (contents of PC and PSW) to stack

· On returning: Restores status of CPU from stack

Execution is returned from the processing routine to the main routine by the RETI instruction. The branch destination address must be in a range of 0 to FFFFH.

Table 8-3. Vector Table Address

Interrupt Source	Vector Table Address	Interrupt Source	Vector Table Address		
BRK instruction	003EH	INTCM10	001AH		
Operand error	003CH	INTCM11	001CH		
NMI	0002H	INTCM20	001EH		
INTWDT	0004H	INTCM21	0020H		
INTOV0	0006H	INTCM30	0022H		
INTOV1	0008H	INTCM31	0024H		
INTOV4	000AH	INTCM40	0026H		
INTP0	000CH INTCM41		0028H		
INTCC00		INTSER	002AH		
INTP1	000EH	INTSR	002CH		
INTCC01		INTCSI1			
INTP2	0010H	INTST	002EH		
INTCC02		INTSER2	0030H		
INTP3	0012H	INTSR2	0032H		
INTCC03		INTCSI2			
INTP4	0014H	INTST2	0034H		
INTP5	0016H	INTAD	0036H		
INTP6	0018H				

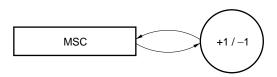

8.3 Context Switching

A specific register bank is selected by hardware when an interrupt request is generated or when the BRKCS instruction is executed.

Execution branches to the vector address stored in advance to the selected register bank, and the current contents of the program counter (PC) and program status word (PSW) are stacked to the register bank.

The branch destination address must be in a range of 0 to FFFFH.

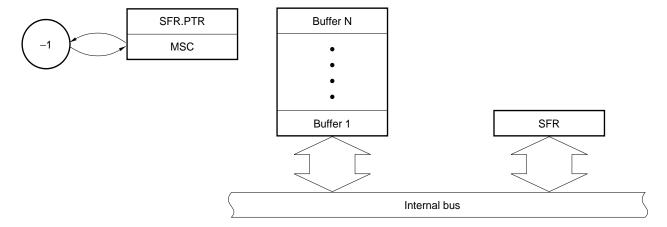
Figure 8-1. Context Switching Operation When Interrupt Request Is Generated



8.4 Macro Service

The μ PD784046(A) has a total of seven types of macro service. Each macro service is outlined below.

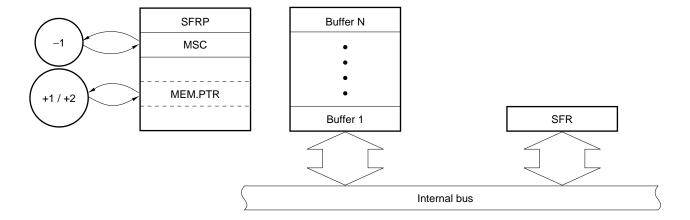
(1) Counter mode: EVTCNT


- Operation (a) Increments or decrements an 8-bit macro service counter (MSC).
 - (b) A vectored interrupt request is generated when the value of MSC reaches 0.

· Application example: Event counter, measurement of number of times of capture

(2) Block transfer mode: BLKTRS

- Operation (a) Transfers block data between the buffer and an SFR specified by the SFR pointer (SFR.PTR).
 - (b) The transfer source and destination can be an SFR or buffer. The length of the data to be transferred can be byte or word.
 - (c) The number of times data is to be transferred (block size) is specified by MSC.
 - (d) MSC is auto-decremented (-1) each time the macro service has been executed.
 - (e) When the value of MSC has reached 0, a vectored interrupt request is generated.

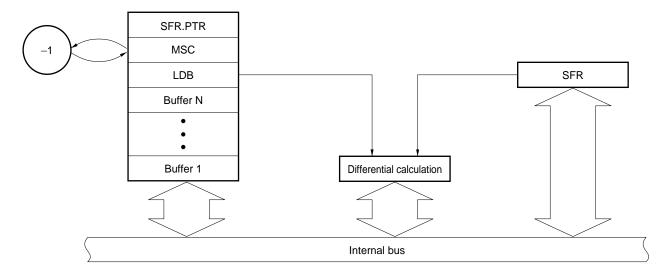


• Application example: Data transfer/reception of serial interface

(3) Block transfer mode (with memory pointer): BLKTRS-P

Operation This is the block transfer mode in (2) with a memory pointer (MEM.PTR) appended. The
appended buffer area of MEMP can be freely set on the memory space.

Remark MEM.PTR is auto-incremented (+1: byte data transfer/+2: word data transfer) each time the macro service has been executed.

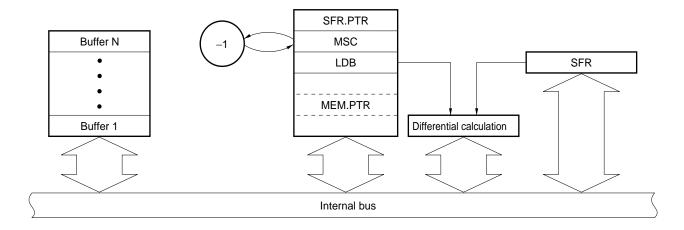


• Application example: Same as (2)

(4) Data differential mode: DTADIF

- Operation (a) Calculates the difference between the contents of the SFR specified by SFR pointer (SFR.PTR) (current value) and the contents of the SFR loaded to the last data buffer (LDB).
 - (b) Stores the result of the calculation to a predetermined buffer area.
 - (c) Stores the contents of the current value of SFR to LDB.
 - (d) The number of times the data is to be transferred (block size) is specified by MSC. The value of MSC is auto-decremented (-1) each time the macro service has been executed.
 - (e) When the value of MSC has reached 0, a vectored interrupt request is generated.

Remark The differential calculation can be performed only an SFR of 16-bit configuration.



· Application example: Measurement of period and pulse width by capture register of timer 0

(5) Data differential mode (with memory pointer): DTADIF-P

- Operation This is the data differential mode in (4) with a memory pointer (MEM.PTR) appended. The
 appended MEM.PTR can set a buffer area to which the differential data is to be stored on the
 memory space freely.
 - Remarks 1. The differential calculation can be performed only an SFR of 16-bit configuration.
 - 2. The buffer is specified by the result of an operation between MEM.PTR and MSC^{Note}. The value of MEM.PTR is not updated after the data has been transferred.

Note MEM.PTR – (MSC \times 2) + 2

• Application example: Same as (4)

(6) CPU monitoring mode0: SFLF0

- · Operation (a) Checks the internal operation of the CPU.
 - (b) When the blocks are operating normally, the value given by subtracting 10 from the initial value is transferred to the SFR specified by the SFR pointer (SFR.PTR).
- Application example: Used for self checking of the CPU during normal operation.

(7) CPU monitoring mode1: SELF1

- Operation (a) Checks the internal operation of the CPU.
 - (b) When the blocks are operating normally, the value given by subtracting 8 from the initial value is transferred to the SFR specified by the SFR pointer (SFR.PTR).
- Application example: Used for self checking of the CPU during normal operation.

9. LOCAL BUS INTERFACE

The μ PD784046(A) can be connected to an external memory or I/O (memory mapped I/O), supporting a 1M-byte memory space (refer to **Figure 9-1**).

Address bus μ**PD784046(A)** Decoder A16-A19 $\overline{\mathsf{RD}}$ Character **LWR** SRAM **PROM** generator AD0-AD7 Data bus **ASTB** Latch Address bus AD8-AD15 Gate array I/O expansion Centronics I/F, etc.

Figure 9-1. Example of Local Bus Interface (with external 8-bit bus specified)

P92: HWR

P93: ASTB

Rest of pins can be used as

general-purpose port pins.

9.1 Memory Expansion

The external program memory or data memory can be expanded from 256 bytes up to 1M bytes in seven steps.

When an external device is connected, the address/data bus and read/write strobe signals are controlled by using ports 4 through 6 and P90 through P93 pins. The functions of these ports and pins are set by the memory expansion mode register (MM).

Pin Function Memory Expansion Port 5 Mode Register Port 4 Port 6 MM0-MM3 P40-P47 P50-P57 P60-P63 P90-P93 Port mode General-purpose port AD0-AD7 P90 : RD External memory AD8 to AD15 are set stepwise. A16 through A19 are set P91 : LWR expansion mode Rest of pins can be used as stepwise.

general-purpose port pins.

Table 9-1. Setting of Pin Function

Remark AD8 through AD15 are used as address bus.

The number of pins of ports 5 and 6 that are used as address bus pins can be changed according to the size of the external memory connected (external address space), so that the external memory can be expanded stepwise. The pins not used as address bus pins can be used as general-purpose I/O port pins (refer to **Table 9-2**). The external address space can be set in seven steps by MM.

Port 5 Port 6 External address space P51 P52 P50 P53 P54 P55 P56 P57 P60 P61 P62 P63 256 bytes or lessNote General-purpose port AD9 1K bytes or lessNote AD8 AD10 AD11 4K bytes or lessNote 16K bytes or lessNote AD12 AD13 AD14 AD15 64K bytes or less A16 A17 256K bytes or less A18 A19 1M bytes or less

Table 9-2. Operations of Ports 5 and 6 (in external memory expansion mode)

Note When the external 16-bit bus is specified, do not set MM such that the external address space is of this size.

Caution When the external 16-bit bus is specified, set MM such that all the pins of port 5 (P50 through P57) are used as AD pins (AD8 through AD15).

9.2 Memory Space

The 1M-byte memory space is divided into the following eight spaces of logical addresses. Each space can be controlled by using the programmable wait function and bus sizing function.

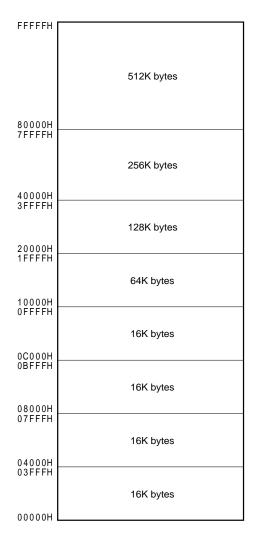


Figure 9-2. Memory Space

9.3 Programmable Wait

A wait state can be inserted to each of the eight memory spaces while the \overline{RD} , \overline{LWR} , and \overline{HWR} signals are active. Even if memories with different access times are connected, therefore, the overall efficiency of the system is not degraded.

In addition, an address wait function that extends the active period of the ASTB signal is also available to extend the address decode time (this function can be set to all the spaces).

9.4 Bus Sizing Function

The μ PD784046(A) can change the external data bus width between 8 and 16 bits when an external device is connected. Even if the memory space is divided by eight, the bus width of each memory space can be specified independently.

10. STANDBY FUNCTION

The μ PD784046(A) has the following standby function modes that reduce the power consumption of the chip.

• HALT mode : This mode stops the operating clock of the CPU. It can reduce the average

power consumption through intermittent operation by combination of a normal

operation and this mode.

• IDLE mode : This mode stops the entire system with the operation of the oscillation circuit

continuing. Normal program operation can be restored from this mode with the power consumption close to that in the STOP mode and time equivalent

to that in the HALT mode.

• STOP mode : This mode stops the oscillator and stops all the internal operations of the chip

to minimize the power consumption to the level of only leakage current.

These modes are programmable.

Macro service can be started from the HALT mode.

Macro service request Oscillation stabilization End of first processing Program Macro time expires Waits for operation End of macro service service stabilization of oscillation A CONTRACTOR OF THE PROPERTY O STOP setting RESET input **STOP** HALT (standby) **IDLE** (standby) Interrupt request of (standby) masked interrupt

Figure 10-1. Standby Status Transition

Note Only unmasked interrupt request

Remark Only external input of NMI is valid. The watchdog timer cannot be used to release the standby mode (STOP/HALT/IDLE).

11. RESET FUNCTION

When a low level is input to the RESET pin, the internal hardware is initialized (reset status). When the RESET signal goes high, the following data is set to the program counter (PC).

Lower 8 bits of PC : contents of address 0000H

· Middle 8 bits of PC: contents of address 0001H

• Higher 4 bits of PC: 0

The contents of the PC are assumed as a branch destination address and program execution is started from this address. Therefore, the program can be reset and started from any address.

Set the contents of each register by program as necessary.

To prevent malfunctioning due to noise, a noise rejection circuit is provided to the RESET input circuit. This noise rejection circuit is a sampling circuit with analog delay.

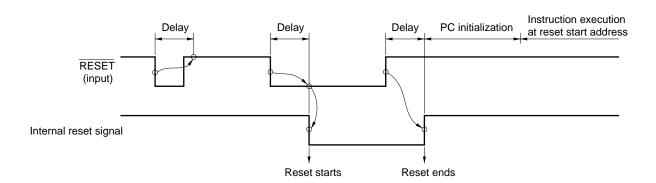


Figure 11-1. Accepting Reset

Keep the RESET signal active until the oscillation stabilization time (about 40 ms) elapses when executing a reset operation on power application or when releasing the STOP mode by reset.

Figure 11-2. Reset Operation on Power Application

12. INSTRUCTION SET

(1) 8-bit instructions ((): combination realized by writing A as r)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHKL, CHKLA

Table 12-1. Instructions for 8-Bit Addressing

2nd Operand	#byte	А	r	saddr	sfr	!addr16	mem	r3	[WHL+]	n	None ^{Note 2}
			r'	saddr'		!!addr24	[saddrp]	PSWL	[WHL-]		
1st Operand \							[%saddrg]	PSWH			
Α	(MOV)	(MOV)	MOV	(MOV)Note 6	MOV	(MOV)	MOV	MOV	(MOV)		
	ADDNote 1	(XCH)	XCH	(XCH)Note 6	(XCH)	(XCH)	XCH		(XCH)		
		(ADD)Note 1	(ADD)Note 1	(ADD)Note 1, 6	(ADD)Note 1	ADDNote 1	ADDNote 1		(ADD)Note 1		
r	MOV	(MOV)	MOV	MOV	MOV	MOV				RORNote 3	MULU
	ADDNote 1	(XCH)	XCH	XCH	XCH	XCH					DIVUW
		(ADD)Note 1	ADDNote 1	ADDNote 1	ADDNote 1						INC
											DEC
saddr	MOV	(MOV)Note 6	MOV	MOV							INC
	ADDNote 1	(ADD)Note 1	ADDNote 1	XCH							DEC
				ADDNote 1							DBNZ
sfr	MOV	MOV	MOV								PUSH
	ADDNote 1	(ADD)Note 1	ADDNote 1								POP
											CHKL
											CHKLA
!addr16	MOV	(MOV)	MOV								
!!addr24		ADDNote 1									
mem		MOV									
[saddrp]		ADDNote 1									
[%saddrg]											
mem3											ROR4
											ROL4
r3	MOV	MOV									
PSWL											
PSWH											
B, C											DBNZ
STBC, WDM	MOV										
[TDE+]		(MOV)							MOVBKNote 5		
[TDE-]		(ADD)Note 1									
		MOVMNote 4									

Notes 1. ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as ADD.

- 2. Either the second operand is not used, or the second operand is not an operand address.
- 3. ROL, RORC, ROLC, SHR, and SHL are the same as ROR.
- 4. XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as MOVM.
- 5. XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as MOVBK.
- **6.** If saddr is saddr2 in this combination, some instructions have a short code length.

(2) 16-bit instructions ((): combination realized by writing AX as rp)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 12-2. Instructions for 16-Bit Addressing

2nd Operand	#word	AX	rp	saddrp	sfrp	!addr16	mem	[WHL+]	byte	n	None ^{Note 2}
			rp'	saddrp'		!!addr24	[saddrp]				
1st Operand \							[%saddrg]				
AX	(MOVW)	(MOVW)	(MOVW)	(MOVW)Note 3	MOVW	(MOVW)	MOVW	(MOVW)			
	ADDW ^{Note 1}	(XCHW)	(XCHW)	(XCHW)Note 3	(XCHW)	XCHW	XCHW	(XCHW)			
		(ADDW)Note 1	(ADDW)Note 1	(ADDW)Note 1, 3	(ADDW)Note 1						
rp	MOVW	(MOVW)	MOVW	MOVW	MOVW	MOVW				SHRW	MULWNote 4
	ADDWNote 1	(XCHW)	XCHW	XCHW	XCHW					SHLW	INCW
		(ADDW)Note 1	ADDWNote 1	ADDWNote 1	ADDWNote 1						DECW
saddrp	MOVW	(MOVW)Note 3	MOVW	MOVW							INCW
	ADDWNote 1	(ADDW)Note 1	ADDWNote 1	XCHW							DECW
				ADDWNote 1							
sfrp	MOVW	MOVW	MOVW								PUSH
	ADDWNote 1	(ADDW)Note 1	ADDWNote 1								POP
!addr16	MOVW	(MOVW)	MOVW						MOVTBLW		
!!addr24											
mem		MOVW									
[saddrp]											
[%saddrg]											
PSW											PUSH
											POP
SP	ADDWG										
	SUBWG										
post											PUSH
											POP
											PUSHU
											POPU
[TDE+]		(MOVW)						SACW			
byte											MACW
											MACSW

Notes 1. SUBW and CMPW are the same as ADDW.

- **2.** Either the second operand is not used, or the second operand is not an operand address.
- 3. If saddrp is saddrp2 in this combination, some instructions have a short code length.
- 4. MULUW and DIVUX are the same as MULW.

(3) 24-bit instructions ((): combination realized by writing WHL as rg) MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 12-3. Instructions for 24-Bit Addressing

2nd Operand	#imm24	WHL	rg	saddrg	!!addr24	mem1	[%saddrg]	SP	NoneNote
1st Operand			rg'						
WHL	(MOVG)	(MOVG)	(MOVG)	(MOVG)	(MOVG)	MOVG	MOVG	MOVG	
	(ADDG)	(ADDG)	(ADDG)	ADDG					
	(SUBG)	(SUBG)	(SUBG)	SUBG					
rg	MOVG	(MOVG)	MOVG	MOVG	MOVG				INCG
	ADDG	(ADDG)	ADDG						DECG
	SUBG	(SUBG)	SUBG						PUSH
									POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg]		MOVG							
SP	MOVG	MOVG							INCG
									DECG

Note Either the second operand is not used, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BCLR, BFSET

Table 12-4. Addressing of Bit Manipulation Instructions

	0)/			N. Nete
2nd Operand	CY	saddr.bit	/saddr.bit	None ^{Note}
		sfr.bit	/sfr.bit	
		A.bit	/A.bit	
		X.bit	/X.bit	
		PSWL.bit	/PSWL.bit	
		PSWH.bit	/PSWH.bit	
		mem2.bit	/mem2.bit	
		!addr16.bit	/!addr16.bit	
1st Operand		!!addr24.bit	/!!addr24.bit	
CY		MOV1	AND1	NOT1
		AND1	OR1	SET1
		OR1		CLR1
		XOR1		
saddr.bit	MOV1			NOT1
sfr.bit				SET1
A.bit				CLR1
X.bit				BF
PSWL.bit				вт
PSWH.bit				BTCLR
mem2.bit				BFSET
!addr16.bit				
!!addr24.bit				

Note Either the second operand is not used, or the second operand is not an operand address.

(5) Call/return/branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 12-5. Addressing for Call/Return/Branch Instructions

Operand of	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
instruction												
address												
Basic	BCNote	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALLF	CALLT	BRKCS	BRK
instruction	BR	BR	BR	BR	BR	BR	BR	BR				RET
			RETCS									RETI
			RETCSB									RETB
Compound	BF											
instruction	вт											
	BTCLR											
	BFSET											
	DBNZ											

Note BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.

(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

13. ELECTRICAL SPECIFICATIONS

Caution The followings are the specifications for the μ PD784044(A), (A1), and (A2). For the μ PD784046(A), (A1), and (A2), these are target specifications.

(1) Electrical specifications of μ PD784044(A), 784046(A) (1/6)

Absolute Maximum Ratings (TA = 25 °C)

Parameter	Symbol		Conditions	Ratings	Unit		
Supply voltage	V _{DD}			-0.5 to +7.0	V		
	AVDD			-0.5 to V _{DD} + 0.5	V		
	AVss			-0.5 to +0.5	V		
Input voltage	Vı	Note 1		$-0.5 \text{ to V}_{DD} + 0.5 \le 7.0$	V		
Output voltage	Vo			-0.5 to V _{DD} + 0.5	V		
Low-level output current	Іоь	All output pins		All output pins		15	mA
		Total of	all output pins	150	mA		
High-level output current	Іон	All outp	ut pins	-10	mA		
		Total of	all output pins	-100	mA		
Analog input voltage	VIAN	Note 2	AVDD > VDD	-0.5 to V _{DD} + 0.5	V		
			V _{DD} ≥ AV _{DD}	-0.5 to AV _{DD} + 0.5			
A/D converter reference	AVREF		AVDD > VDD	-0.5 to V _{DD} + 0.5	V		
input voltage			V _{DD} ≥ AV _{DD}	-0.5 to AV _{DD} + 0.5			
Operating temperature	TA			-40 to +85	°C		
Storage temperature	Tstg			-65 to +150	°C		

Notes 1. Pins other than the pins in Note 2.

2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Conditions

Oscillation Frequency	Та	Vod
8 MHz ≤ fxx ≤ 25 MHz	−40 to +85 °C	4.5 to 5.5 V

Capacitance (TA = 25 °C, Vss = VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сι	f = 1 MHz			10	pF
Output capacitance	Со	0 V except measured pins			10	pF
I/O capacitance	Сю				10	pF

(1) Electrical specifications of μ PD784044(A), 784046(A) (2/6)

Oscillation Circuit Characteristics (TA = -40 to +85 °C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	Vss X1 X2 C1 = C2 =	Oscillation frequency (fxx)	8	25	MHz
External clock		X1 input frequency (fx)	8	25	MHz
	X1 X2 Open ^{Note}	X1 input rise, fall time	0	5	ns
	HCMOS inverter	X1 input high-, low-level width	20	105	ns

Note When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.

Caution When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in the diagram above as follows to prevent adverse influence from wiring capacitance:

- · Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract any signal from the oscillation circuit.

(1) Electrical specifications of μ PD784044(A), 784046(A) (3/6)

DC Characteristics ($T_A = -40 \text{ to } +85 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Со	nditions	MIN.	TYP.	MAX.	Unit
Low-level input voltage	VIL					0.8	V
High-level input voltage	V _{IH1}	Note 1		2.2		V _{DD}	V
	V _{IH2}	Note 2		0.8 V _{DD}		V _{DD}	
Low-level output voltage	Vol	IoL = 2.0 mA				0.45	V
High-level output voltage	Vон	Iон = −400 μА	4	V _{DD} - 1.0			V
Input leakage current	Iu	Note 3	$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{DD}}$			±10	μΑ
Analog pin input leakage current	ILIAN	Note 4	$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{AV}_{\text{DD}}$			±1	μΑ
Output leakage current	ILO	0 V ≤ Vo ≤ Vi	DD			±10	μΑ
V _{DD} supply current	I _{DD1}	Operating mo	ode (fxx = 25 MHz)		40	70	mA
	I _{DD2}	HALT mode ((fxx = 25 MHz)		25	50	mA
	IDD3	IDLE mode (1	fxx = 25 MHz)		10	20	mA
Data retention voltage	VDDDR	STOP mode		2.5			V
Data retention current	IDDDR	STOP mode	VDDDR = 2.5 V		2	15	μΑ
			VDDDR = 5 V ± 10 %		15	50	μΑ
Pull-up resistor	R∟			15	40	80	kΩ

Notes 1. Pins other than pins in Note 2.

- **2.** P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/INTP5/T12, P27/INTP6/T13, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
- 3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog inputs)
- **4.** Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the non-sampling operation)

(1) Electrical specifications of μ PD784044(A), 784046(A) (4/6)

AC Characteristics (TA = -40 to +85 °C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tcyk		80	250	ns
Address setup time (vs. ASTB↓)	t sast	(0.5 + a) T – 20	20		ns
Address hold time (vs. ASTB↓)	thsta	0.5T - 20	20		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	23		ns
Address→RD↓ delay time	tdar	(1 + a) T – 15	65		ns
RD↓→address float time	tFRA			0	ns
Address→data input time	tdaid	(2.5 + a + n) T - 56		144	ns
RD↓→data input time	torid	(1.5 + n) T - 48		72	ns
ASTB↓→RD↓ delay time	tostr	0.5T - 16	24		ns
Data hold time (vs. RD↑)	thrid		0		ns
RD↑→address active time	tdra	0.5T - 14	26		ns
RD low-level width	twrL	(1.5 + n) T - 30	90		ns
Address→LWR, HWR↓ delay time	tdaw	(1 + a) T – 15	65		ns
LWR, HWR↓→data output time	towod			15	ns
ASTB↓→ LWR , HWR ↓ delay time	tostw	0.5T - 16	24		ns
Data setup time (vs. LWR, HWR↑)	tsodw	(1.5 + n) T – 25	95		ns
Data hold time (vs. LWR, HWR↑)	thwod	0.5T - 14	26		ns
IWR, HWR↑→ ASTB↑ delay time	towst	1.5T – 15	105		ns
LWR, HWR low-level width	twwL	(1.5 + n) T - 36	84		ns
Address→WAIT↓ input time	t DAWT	(2 + a) T – 50		110	ns
ASTB↓→WAIT↓ input time	tostwt	1.5T – 40		80	ns
ASTB↓→WAIT hold time	tнsтwт	(1.5 + n) T + 5	125		ns
ASTB↓→WAIT↑ delay time	tostwth	(1.5 + n) T - 40		160 ^{Note}	ns
RD↓→WAIT↓ input time	tdrwt	T – 40		40	ns
RD↓→WAIT hold time	thrwt	(1 + n) T + 5	85		ns
RD↓→WAIT↑ delay time	torwth	(1 + n) T - 40		120 ^{Note}	ns
LWR, HWR↓→WAIT↓ input time	tоwwт	T – 40		40	ns
LWR, HWR↓→WAIT hold time	tнwwт	(1 + n) T + 5	85		ns
LWR, HWR↓→WAIT↑ delay time	tоwwтн	(1 + n) T - 40		120 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. T = tcyk = 1/fclk (fclk is internal system clock frequency)

- **2.** a = 1 when an address wait is inserted, otherwise, 0.
- 3. n indicates the number of the wait cycles by specifying the external wait pins (\overline{WAIT}) or programmable wait control registers 1, 2 (PWC1, PWC2). (n \geq 0. n \geq 1 for tostwth, towwth).
- **4.** Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time (tcyk = T). The values in the above expression column are calculated based on T = 80 ns.

(1) Electrical specifications of μ PD784044(A), 784046(A) (5/6)

Serial Operation ($T_A = -40 \text{ to } +85 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Condit	tions	MIN.	MAX.	Unit
Serial clock cycle time	tcysk	SCK1, SCK2 output	BRG	Tsft		ns
		SCK1, SCK2 input	External clock	640		ns
Serial clock low-level width	twskL	SCK1, SCK2 output	BRG	0.5Tsrt-40		ns
		SCK1, SCK2 input	External clock	280		ns
Serial clock high-level width	twsĸн	SCK1, SCK2 output	BRG	0.5Tsft-40		ns
		SCK1, SCK2 input	External clock	280		ns
SI1, SI2 setup time (vs. SCK1, SCK2↑)	tsssĸ			80		ns
SI1, SI2 hold time (vs. SCK1, SCK2↑)	tнssк			80		ns
SCK1, SCK2↓→SO1, SO2 output delay time	tosbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. Tsft is a value set in software. The minimum value is $tcyk \times 8$.

2. tcyk = 1/fclk (fclk is internal system clock frequency)

Other Operations (TA = -40 to +85 °C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnih, twnil		10		μs
INTP0-INTP6 high, low-level width	twith, twitl		4		tcysmp
TI2, TI3 high, low-level width	twтiн, twтiL		4		tcysmp
RESET high, low-level width	twrsh, twrsL		10		μs

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.

When NIn = 0, $t_{CYSMP} = t_{CYK}$

When NIn = 1, tcysmp = tcyk \times 4

- 2. tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0-6)

AC Timing Test Point

(1) Electrical specifications of μ PD784044(A), 784046(A) (6/6)

AD Converter Characteristics (TA = -40 to +85 $^{\circ}$ C, VDD = 4.5 to 5.5 V, Vss = AVss = 0 V, VDD - 0.5 V \leq AVDD \leq VDD)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note}		4.5 V ≤	AV _{REF} ≤ AV _{DD}			±0.5	%FSR
		3.4 V ≤	AVREF < 4.5 V			±0.7	%FSR
Quantization error						±1/2	LSB
Conversion time	tconv	80 ns ≤	tсук ≤ 250 ns	169			t cyk
Sampling time	tsamp	80 ns ≤	tсук ≤ 250 ns	20			t cyk
Zero-scale error ^{Note}		4.5 V ≤	AV _{REF} ≤ AV _{DD}		±1.5	±3.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Full-scale errorNote		4.5 V ≤	AV _{REF} ≤ AV _{DD}		±1.5	±3.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Nonlinearity error ^{Note}		4.5 V ≤	AV _{REF} ≤ AV _{DD}		±1.5	±2.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF+0.3	V
A/D converter reference input voltage	AVREF			3.4		AVDD	V
AVREF current	Alref				1.0	3.0	mA
AV _{DD} supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Aldddr	STOP	AVDDDR = 2.5 V		2	10	μΑ
current		mode	AVDDDR = 5 V ± 10%		10	50	μΑ

Note The quantization error is excluded.

Remark toyk = 1/folk (folk is internal system clock frequency).

(2) Electrical specifications of μ PD784044(A1), 784046(A1) (1/6)

Absolute Maximum Ratings ($T_A = 25$ °C)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}			-0.5 to +7.0	V
	AVDD			-0.5 to V _{DD} + 0.5	V
	AVss			-0.5 to +0.5	V
Input voltage	Vı	Note 1		$-0.5 \text{ to V}_{DD} + 0.5 \le 7.0$	V
Output voltage	Vo			-0.5 to V _{DD} + 0.5	V
Low-level output current	Іоь	All outp	ut pins	15	mA
		Total of	all output pins	150	mA
High-level output current	Іон	All outp	ut pins	-10	mA
		Total of	all output pins	-100	mA
Analog input voltage	VIAN	Note 2	AVDD > VDD	-0.5 to V _{DD} + 0.5	V
			V _{DD} ≥ AV _{DD}	-0.5 to AV _{DD} + 0.5	
A/D converter reference	AVREF		AVDD > VDD	-0.5 to V _{DD} + 0.5	V
input voltage			V _{DD} ≥ AV _{DD}	-0.5 to AV _{DD} + 0.5	
Operating temperature	TA			-40 to +110	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. Pins other than the pins in Note 2.

2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Conditions

Oscillation Frequency	TA	V _{DD}
8 MHz ≤ fxx ≤ 20 MHz	−40 to +110 °C	4.5 to 5.5 V

Capacitance (TA = 25 °C, Vss = VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			10	pF
Output capacitance	Со	0 V except measured pins			10	pF
I/O capacitance	Сю				10	pF

(2) Electrical specifications of μ PD784044(A1), 784046(A1) (2/6)

Oscillation Circuit Characteristics (TA = -40 to +110 °C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	Vss X1 X2 C1 = C2 =	Oscillation frequency (fxx)	8	20	MHz
External clock		X1 input frequency (fx)	8	20	MHz
	X1 X2 Open ^{Note}	X1 input rise, fall time	0	5	ns
	HCMOS inverter	X1 input high-, low-level width	20	105	ns

Note When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.

Caution When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in the diagram above as follows to prevent adverse influence from wiring capacitance:

- · Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows
- Do not extract any signal from the oscillation circuit.

(2) Electrical specifications of μ PD784044(A1), 784046(A1) (3/6)

DC Characteristics ($T_A = -40 \text{ to } +110 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Со	nditions	MIN.	TYP.	MAX.	Unit
Low-level input voltage	VIL			0		0.8	V
High-level input voltage	V _{IH1}	Note 1		2.2		V _{DD}	V
	V _{IH2}	Note 2		0.8 V _{DD}		V _{DD}	
Low-level output voltage	Vol	IoL = 2.0 mA				0.45	V
High-level output voltage	Vон	Iон = −400 μ/	A	V _{DD} - 1.0			V
Input leakage current	Iы	Note 3	$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{DD}}$			±10	μΑ
Analog pin input leakage current	ILIAN	Note 4	$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{AV}_{\text{DD}}$			±2	μΑ
Output leakage current	ILO	0 V ≤ Vo ≤ Vi	DD			±10	μΑ
V _{DD} supply current	I _{DD1}	Operating mo	ode (fxx = 20 MHz)		30	60	mA
	I _{DD2}	HALT mode ((fxx = 20 MHz)		15	30	mA
	IDD3	IDLE mode (1	fxx = 20 MHz)		10	20	mA
Data retention voltage	VDDDR	STOP mode		2.5			V
Data retention current	IDDDR	STOP mode	VDDDR = 2.5 V		2	100	μΑ
			VDDDR = 5 V ± 10 %		15	1000	μΑ
Pull-up resistor	R∟			15	40	80	kΩ

Notes 1. Pins other than pins in Note 2.

- **2.** P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/INTP5/T12, P27/INTP6/T13, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
- 3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog inputs)
- **4.** Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the non-sampling operation)

(2) Electrical specifications of μ PD784044(A1), 784046(A1) (4/6)

AC Characteristics ($T_A = -40 \text{ to } +110 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tсүк		100	250	ns
Address setup time (vs. ASTB↓)	t sast	(0.5 + a) T – 20	30		ns
Address hold time (vs. ASTB↓)	t HSTA	0.5T - 20	30		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	33		ns
Address→RD↓ delay time	tdar	(1 + a) T – 15	85		ns
RD↓→address float time	tFRA			0	ns
Address→data input time	t DAID	(2.5 + a + n) T - 56		194	ns
RD↓→data input time	torid	(1.5 + n) T - 53		97	ns
ASTB↓→RD↓ delay time	tostr	0.5T - 16	34		ns
Data hold time (vs. RD↑)	thrid		0		ns
RD↑→address active time	t DRA	0.5T - 14	36		ns
RD low-level width	twrL	(1.5 + n) T - 30	120		ns
Address→LWR, HWR↓ delay time	t DAW	(1 + a) T – 15	85		ns
LWR, HWR↓→data output time	towod			15	ns
ASTB↓→ LWR , HWR ↓ delay time	tostw	0.5T - 16	34		ns
Data setup time (vs. LWR, HWR↑)	tsodw	(1.5 + n) T – 25	125		ns
Data hold time (vs. LWR, HWR↑)	thwod	0.5T - 14	36		ns
$\overline{LWR}, \overline{HWR}\!\!\uparrow \to ASTB\!\!\uparrow delay time$	towst	1.5T – 15	135		ns
LWR, HWR low-level width	twwL	(1.5 + n) T – 36	114		ns
Address→WAIT↓ input time	t DAWT	(2 + a) T – 50		150	ns
ASTB↓→WAIT↓ input time	tostwt	1.5T – 40		110	ns
ASTB↓→WAIT hold time	tнsтwт	(1.5 + n) T + 5	155		ns
ASTB↓→WAIT↑ delay time	tostwth	(1.5 + n) T - 40		210 ^{Note}	ns
RD↓→WAIT↓ input time	t DRWT	T – 40		60	ns
RD↓→WAIT hold time	thrwt	(1 + n) T + 5	105		ns
RD↓→WAIT↑ delay time	torwth	(1 + n) T - 40		160 ^{Note}	ns
TWR, HWR↓→WAIT↓ input time	towwr	T – 40		60	ns
LWR, HWR↓→WAIT hold time	tнwwт	(1 + n) T + 5	105		ns
LWR, HWR↓→WAIT↑ delay time	tоwwтн	(1 + n) T - 40		160 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. T = tcyk = 1/fclk (fclk is internal system clock frequency)

- **2.** a = 1 when an address wait is inserted, otherwise, 0.
- 3. n indicates the number of the wait cycles by specifying the external wait pins (\overline{WAIT}) or programmable wait control registers 1, 2 (PWC1, PWC2). (n \geq 0. n \geq 1 for tostwth, towwth).
- **4.** Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time (tcyk = T). The values in the above expression column are calculated based on T = 100 ns.

(2) Electrical specifications of μ PD784044(A1), 784046(A1) (5/6)

Serial Operation ($T_A = -40 \text{ to } +110 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Condit	Conditions			Unit
Serial clock cycle time	tcysk	SCK1, SCK2 output	BRG	Tsft		ns
		SCK1, SCK2 input	External clock	800		ns
Serial clock low-level width	twskL	SCK1, SCK2 output	BRG	0.5Tsrt-40		ns
		SCK1, SCK2 input	External clock	360		ns
Serial clock high-level width	twsкн	SCK1, SCK2 output	BRG	0.5Tsrt-40		ns
		SCK1, SCK2 input	External clock	360		ns
SI1, SI2 setup time (vs. SCK1, SCK2↑)	tsssk			80		ns
SI1, SI2 hold time (vs. SCK1, SCK2↑)	thssk			80		ns
SCK1, SCK2↓→SO1, SO2 output delay time	tosbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. Tsft is a value set in software. The minimum value is $tcyk \times 8$.

2. tcyk = 1/fclk (fclk is internal system clock frequency)

Other Operations (TA = -40 to +110 °C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnih, twnil		10		μs
INTP0-INTP6 high, low-level width	twith, twitl		4		tcysmp
TI2, TI3 high, low-level width	twтiн, twтiL		4		tcysmp
RESET high, low-level width	twrsh, twrsl		10		μs

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.

When NIn = 0, tcysmp = tcyk

When NIn = 1, tcysmp = $tcyk \times 4$

- 2. tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0-6)

AC Timing Test Point

(2) Electrical specifications of μ PD784044(A1), 784046(A1) (6/6)

AD Converter Characteristics (TA = -40 to +110 °C, VDD = 4.5 to 5.5 V, Vss = AVss = 0 V, $V_{DD} - 0.5 \ V \le AV_{DD} \le V_{DD})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note}		4.5 V ≤	AV _{REF} ≤ AV _{DD}			±0.5	%FSR
		3.4 V ≤	AVREF < 4.5 V			±0.7	%FSR
Quantization error						±1/2	LSB
Conversion time	tconv			169			t cyk
Sampling time	tsamp			20			t cyk
Zero-scale error ^{Note}		4.5 V ≤	AVREF ≤ AVDD		±1.5	±3.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Full-scale errorNote		4.5 V ≤	AVREF ≤ AVDD		±1.5	±3.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Nonlinearity error ^{Note}		4.5 V ≤	AVREF ≤ AVDD		±1.5	±2.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF+0.3	V
A/D converter reference input voltage	AVREF			3.4		AV _{DD}	V
AVREF current	Alref				3.0	4.0	mA
AV _{DD} supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Aldddr	STOP	AVDDDR = 2.5 V		2	100	μΑ
current		mode	AVDDDR = 5 V ± 10%		10	1000	μΑ

Note The quantization error is excluded.

Remark tcyk = 1/fclk (fclk is internal system clock frequency).

(3) Electrical specifications of μ PD784044(A2), 784046(A2) (1/6)

Absolute Maximum Ratings ($T_A = 25$ °C)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}			-0.5 to +7.0	V
	AVDD			-0.5 to V _{DD} + 0.5	V
	AVss			-0.5 to +0.5	V
Input voltage	Vı	Note 1		$-0.5 \text{ to V}_{DD} + 0.5 \le 7.0$	V
Output voltage	Vo			-0.5 to V _{DD} + 0.5	V
Low-level output current	Іоь	All output pins		15	mA
		Total of all output pins		150	mA
High-level output current	Іон	All output pins		-10	mA
		Total of all output pins		-100	mA
Analog input voltage	VIAN	Note 2 AVDD > VDD		-0.5 to V _{DD} + 0.5	V
			V _{DD} ≥ AV _{DD}	-0.5 to AV _{DD} + 0.5	
A/D converter reference	AVREF		AVDD > VDD	-0.5 to V _{DD} + 0.5	V
input voltage		V _{DD} ≥ AV _{DD}		-0.5 to AV _{DD} + 0.5	
Operating temperature	TA			-40 to +125	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. Pins other than the pins in Note 2.

2. Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Conditions

Oscillation Frequency	TA	V _{DD}
8 MHz ≤ fxx ≤ 20 MHz	−40 to +125 °C	4.5 to 5.5 V

Capacitance (TA = 25 °C, Vss = VDD = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	С	f = 1 MHz			10	pF
Output capacitance	Со	0 V except measured pins			10	pF
I/O capacitance	Сю				10	pF

(3) Electrical specifications of μ PD784044(A2), 784046(A2) (2/6)

Oscillation Circuit Characteristics (TA = -40 to +125 °C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Resonator	Recommended Circuit	Item	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	Vss X1 X2 C1 = C2 =	Oscillation frequency (fxx)	8	20	MHz
External clock		X1 input frequency (fx)	8	20	MHz
	X1 X2 Open ^{Note}	X1 input rise, fall time	0	5	ns
	HCMOS inverter	X1 input high-, low-level width	20	105	ns

Note When the EXTC bit of the oscillation stabilization time specification register (OSTS) = 0. Input the reverse phase clock of the pin X1 to the pin X2 when the EXTC bit = 1.

Caution When using a system clock oscillation circuit, wire the portion enclosed by the dotted line in the diagram above as follows to prevent adverse influence from wiring capacitance:

- · Keep the wiring length as short as possible.
- Do not cross the wiring with any other signal lines. Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground potential for the capacitor in the oscillation circuit at the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not extract any signal from the oscillation circuit.

(3) Electrical specifications of μ PD784044(A2), 784046(A2) (3/6)

DC Characteristics ($T_A = -40 \text{ to } +125 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Со	nditions	MIN.	TYP.	MAX.	Unit
Low-level input voltage	VIL			0		0.8	V
High-level input voltage	V _{IH1}	Note 1		2.2		V _{DD}	V
	V _{IH2}	Note 2		0.8 V _{DD}		V _{DD}	
Low-level output voltage	Vol	IoL = 2.0 mA				0.45	V
High-level output voltage	Vон	Iон = −400 μ/	A	V _{DD} - 1.0			V
Input leakage current	Iы	Note 3	$0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{DD}}$			±10	μΑ
Analog pin input leakage current	ILIAN	Note 4 0 V ≤ V _I ≤ AV _{DD}				±2	μΑ
Output leakage current	ILO	0 V ≤ Vo ≤ Vi	DD			±10	μΑ
V _{DD} supply current	I _{DD1}	Operating mo	ode (fxx = 20 MHz)		30	60	mA
	I _{DD2}	HALT mode ((fxx = 20 MHz)		15	30	mA
	IDD3	IDLE mode (1	fxx = 20 MHz)		10	20	mA
Data retention voltage	VDDDR	STOP mode		2.5			V
Data retention current	IDDDR	STOP mode VDDDR = 2.5 V			2	100	μΑ
			VDDDR = 5 V ± 10 %		15	1000	μΑ
Pull-up resistor	R∟			15	40	80	kΩ

Notes 1. Pins other than pins in Note 2.

- **2.** P20/NMI, P21/INTP0/T000, P22/INTP1/T001, P23/INTP2/T002, P24/INTP3/T003, P25/INTP4, P26/INTP5/T12, P27/INTP6/T13, P34/ASCK/SCK1, P37/ASCK2/SCK2, X1, X2, RESET
- 3. Input and I/O pins (except X1 and X2, and P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 used as analog inputs)
- **4.** Pins P70/ANI0-P77/ANI7, P80/ANI8-P87/ANI15 (pins used as analog input, only during the non-sampling operation)

(3) Electrical specifications of μ PD784044(A2), 784046(A2) (4/6)

AC Characteristics ($T_A = -40 \text{ to } +125 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Read/write operation

Parameter	Symbol	Expression	MIN.	MAX.	Unit
System clock cycle time	tсүк		100	250	ns
Address setup time (vs. ASTB↓)	tsast	(0.5 + a) T – 20	30		ns
Address hold time (vs. ASTB↓)	t HSTA	0.5T - 20	30		ns
ASTB high-level width	twsтн	(0.5 + a) T – 17	33		ns
Address→RD↓ delay time	tdar	(1 + a) T – 15	85		ns
RD↓→address float time	tFRA			0	ns
Address→data input time	t DAID	(2.5 + a + n) T - 56		194	ns
RD↓→data input time	torid	(1.5 + n) T - 53		97	ns
ASTB↓→RD↓ delay time	tostr	0.5T - 16	34		ns
Data hold time (vs. RD↑)	thrid		0		ns
RD↑→address active time	tdra	0.5T - 14	36		ns
RD low-level width	twrL	(1.5 + n) T - 30	120		ns
Address→ LWR , HWR ↓ delay time	tdaw	(1 + a) T – 15	85		ns
LWR, HWR↓→data output time	towod			15	ns
ASTB↓→ LWR , HWR ↓ delay time	tostw	0.5T - 16	34		ns
Data setup time (vs. LWR , HWR ↑)	tsodw	(1.5 + n) T – 25	125		ns
Data hold time (vs. LWR, HWR↑)	thwod	0.5T - 14	36		ns
$\overline{LWR},\overline{HWR}\!\!\uparrow \to ASTB\!\!\uparrow delay time$	towst	1.5T – 15	135		ns
LWR, HWR low-level width	twwL	(1.5 + n) T - 36	114		ns
Address→WAIT↓ input time	t DAWT	(2 + a) T - 50		150	ns
ASTB↓→WAIT↓ input time	tostwt	1.5T – 40		110	ns
ASTB↓→WAIT hold time	tнsтwт	(1.5 + n) T + 5	155		ns
ASTB↓→WAIT↑ delay time	tostwth	(1.5 + n) T - 40		210 ^{Note}	ns
RD↓→WAIT↓ input time	tdrwt	T – 40		60	ns
RD↓→WAIT hold time	thrwt	(1 + n) T + 5	105		ns
RD↓→WAIT↑ delay time	torwth	(1 + n) T - 40		160 ^{Note}	ns
LWR, HWR↓→WAIT↓ input time	towwr	T – 40		60	ns
LWR, HWR↓→WAIT hold time	tнwwт	(1 + n) T + 5	105		ns
UR, HWR↓→WAIT↑ delay time	tоwwтн	(1 + n) T - 40		160 ^{Note}	ns

Note Specification when an external wait is inserted

Remarks 1. T = tcyk = 1/fclk (fclk is internal system clock frequency)

- **2.** a = 1 when an address wait is inserted, otherwise, 0.
- 3. n indicates the number of the wait cycles by specifying the external wait pins (\overline{WAIT}) or programmable wait control registers 1, 2 (PWC1, PWC2). (n \geq 0. n \geq 1 for tostwth, tdrwth, tdrwth).
- **4.** Calculate values in the expression column with the system clock cycle time to be used because these values depend on the system clock cycle time (tcyk = T). The values in the above expression column are calculated based on T = 100 ns.

(3) Electrical specifications of μ PD784044(A2), 784046(A2) (5/6)

Serial Operation ($T_A = -40 \text{ to } +125 ^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Condit	ions	MIN.	MAX.	Unit
Serial clock cycle time	tcysk	SCK1, SCK2 output	BRG	Tsft		ns
		SCK1, SCK2 input	External clock	800		ns
Serial clock low-level width	twsĸL	SCK1, SCK2 output	BRG	0.5Tsrt-40		ns
		SCK1, SCK2 input	External clock	360		ns
Serial clock high-level width	twsкн	SCK1, SCK2 output	BRG	0.5Tsrt-40		ns
		SCK1, SCK2 input	External clock	360		ns
SI1, SI2 setup time (vs. SCK1, SCK2↑)	tsssk			80		ns
SI1, SI2 hold time (vs. SCK1, SCK2↑)	thssk			80		ns
SCK1, SCK2↓→SO1, SO2 output delay time	tosbsk	R = 1 kΩ, C = 100 p	F	0	150	ns

Remarks 1. Tsft is a value set in software. The minimum value is $tcyk \times 8$.

2. tcyk = 1/fclk (fclk is internal system clock frequency)

Other Operations (TA = -40 to +125 °C, VDD = 4.5 to 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI high, low-level width	twnih, twnil		10		μs
INTP0-INTP6 high, low-level width	twith, twitl		4		tcysmp
TI2, TI3 high, low-level width	twtih, twtil		4		tcysmp
RESET high, low-level width	twrsh, twrsl		10		μs

Remarks 1. tcysmp is a sampling clock set in the noise protection control register (NPC) in software.

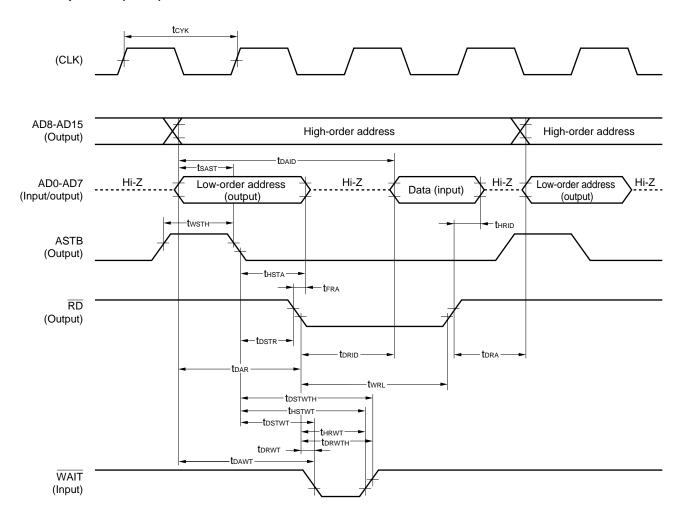
When NIn = 0, tcysmp = tcyk

When NIn = 1, tcysmp = tcyk \times 4

- 2. tcyk = 1/fclk (fclk is internal system clock frequency)
- **3.** NIn: Bit n of NPC (n = 0-6)

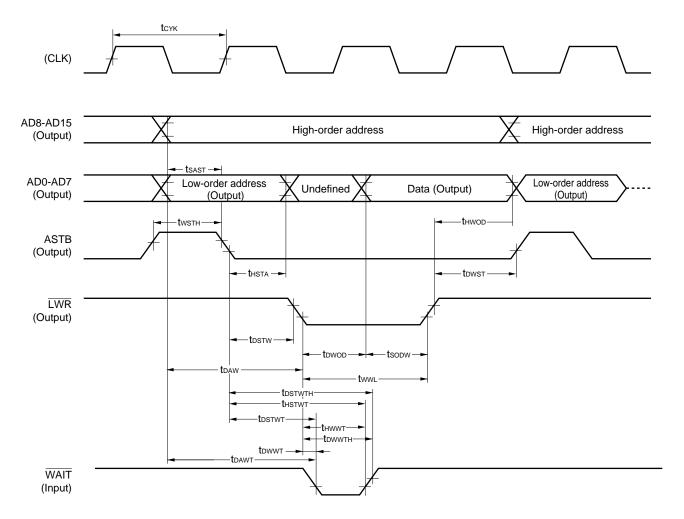
AC Timing Test Point

(3) Electrical specifications of μ PD784044(A2), 784046(A2) (6/6)

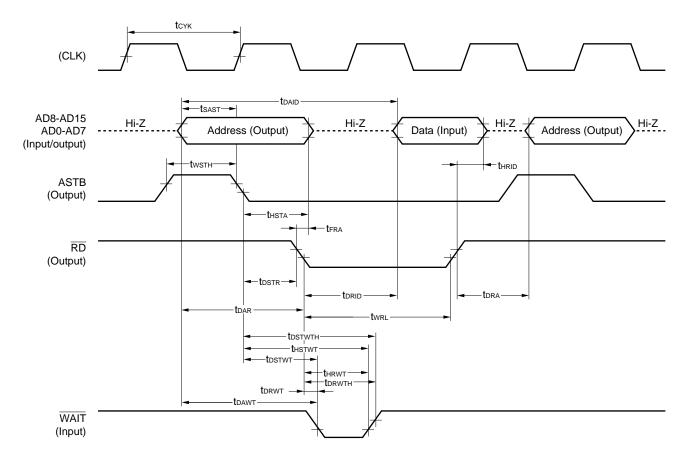

AD Converter Characteristics (TA = -40 to +125 °C, VDD = 4.5 to 5.5 V, Vss = AVss = 0 V, $V_{DD} - 0.5 \ V \le AV_{DD} \le V_{DD})$

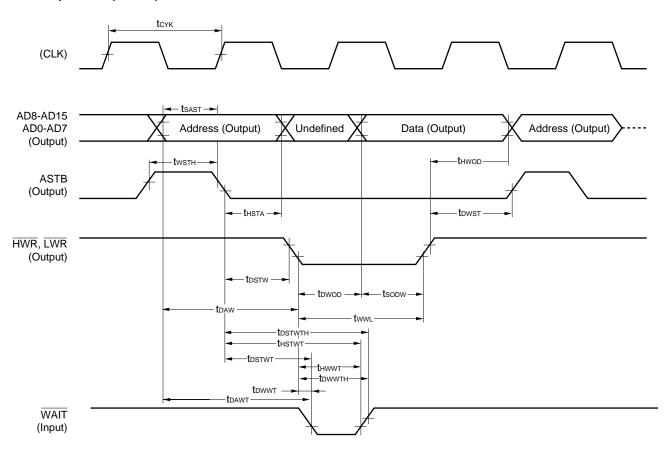
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error ^{Note}		4.5 V ≤	AV _{REF} ≤ AV _{DD}			±0.5	%FSR
		3.4 V ≤	AVREF < 4.5 V			±0.7	%FSR
Quantization error						±1/2	LSB
Conversion time	tconv			169			tcyk
Sampling time	tsamp			20			tcyk
Zero-scale error ^{Note}		4.5 V ≤	AV _{REF} ≤ AV _{DD}		±1.5	±3.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Full-scale errorNote		4.5 V ≤	$AV_{REF} \leq AV_{DD}$		±1.5	±3.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Nonlinearity error ^{Note}		4.5 V ≤	AV _{REF} ≤ AV _{DD}		±1.5	±2.5	LSB
		3.4 V ≤	AVREF < 4.5 V		±1.5	±4.5	LSB
Analog input voltage	VIAN			-0.3		AVREF+0.3	V
A/D converter reference input voltage	AVREF			3.4		AV _{DD}	V
AVREF current	Alref				3.0	4.0	mA
AV _{DD} supply current	Aldd				2.0	6.0	mA
A/D converter data retention	Aldddr	STOP	AVDDDR = 2.5 V		2	100	μΑ
current		mode	AVDDDR = 5 V ± 10%		10	1000	μΑ

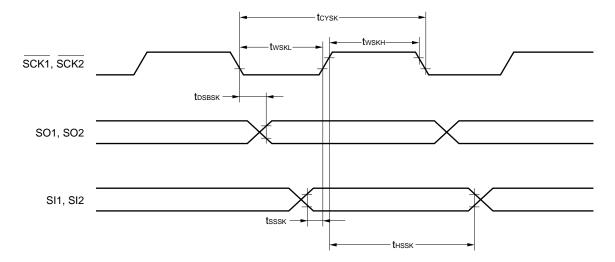
Note The quantization error is excluded.

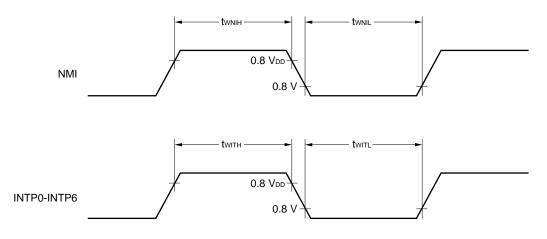

Remark tcyk = 1/fclk (fclk is internal system clock frequency).

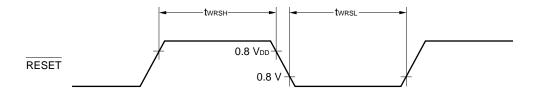
Read Operation (8 bits)

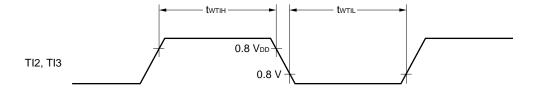



Write Operation (8 bits)

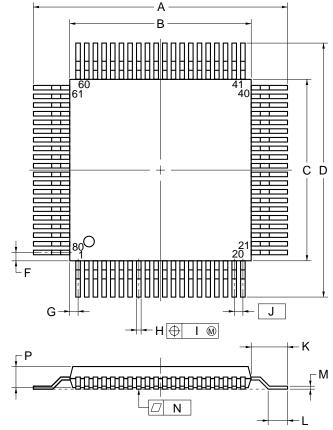

Read Operation (16 bits)

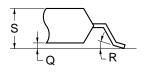

Write Operation (16 bits)


Serial Operation


Interrupt Input Timing

Reset Input Timing


Timer Input Timing



14. PACKAGE DRAWING

80 PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.15 ^{+0.10} -0.05	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7±0.1	$0.106^{+0.005}_{-0.004}$
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

S80GC-65-3B9-5

Remark The package dimensions and materials of ES versions are the same as those of mass-production versions.

15. RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the conditions recommended below.

For details of soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, please contact your NEC representative.

Table 15-1. Surface-Mount Type Soldering Conditions

 μ PD784044GC(A)- $\times\times$ -3B9 : 80-pin plastic QFP (14 \times 14 mm) μ PD784044GC(A1)- $\times\times$ -3B9 : 80-pin plastic QFP (14 \times 14 mm) μ PD784044GC(A2)- $\times\times$ -3B9 : 80-pin plastic QFP (14 \times 14 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: 30 sec. max. (210 °C min.), Number of times: 3 max.	IR35-00-3
Partial heating	Pin temterature: 300 °C max., 3 sec. max. (per side of device)	_

Caution The μ PD784046(A), (A1), and (A2) are under development. Therefore, the soldering conditions for the μ PD784046(A), (A1), and (A2) are undefined.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for developing systems using the μ PD784046(A). Refer to (5) Cautions when the development tools are used.

(1) Language processing software

RA78K4	78K/IV series common assembler package
CC78K4	78K/IV series common C compiler package
DF784046	Device file for the μ PD784046 subseries
CC78K4-L	78K/IV series common C compiler library source file

(2) Flash memory writing tools

Flashpro II	Dedicated flash programmer for microcomputers incorporating flash memory	
(Part number: FL-PR2)		
FA-80GC	Adapter for flash memory writing	

(3) Debugging tools

• When using the IE-78K4-NS in-circuit emulator

IE-78K4-NS ^{Note}	78K/IV series common in-circuit emulator
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-CNote	Interface adapter necessary when a PC-9800 series computer (except notebook-type personal computer) is used as host machine
IE-70000-CD-IF ^{Note}	PC card and interface cable necessary when a PC-9800 series notebook-type personal computer is used as host machine
IE-70000-PC-IF-CNote	Interface adapter necessary when an IBM PC/AT TM or a compatible machine is used as host machine
IE-784046-NS-EM1 ^{Note}	Emulation board for emulating the μ PD784046 subseries
NP-80GC	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
EV-9200GC-80	Socket to be mounted on the board of the target system for 80-pin plastic QFP (GC-3B9 type)
ID78K4-NS ^{Note}	Integrated debugger for IE-78K4-NS
SM78K4	78K/IV series common system simulator
DF784046	Device file for the μ PD784046 subseries

Note Under development

• When using the IE-784000-R in-circuit emulator

IE-784000-R	78K/IV series common in-circuit emulator
IE-70000-98-IF-B IE-70000-98-IF-C ^{Note}	Interface adapter necessary when a PC-9800 series computer (except notebook-type personal computer) is used as host machine
IE-70000-98N-IF	Interface adapter and cable necessary when a PC-9800 series notebook-type personal computer is used as host machine
IE-70000-PC-IF-B IE-70000-PC-IF-C ^{Note}	Interface adapter necessary when an IBM PC/AT or a compatible machine is used as host machine
IE-78000-R-SV3	Interface adapter and cable necessary when an EWS is used as host machine
IE-784000-R-EM	78K/IV series common emulation board
IE-784046-NS-EM1 ^{Note} IE-784046-R-EM1	Emulation board for emulating the μ PD784046 subseries
IE78K4-R-EX2 ^{Note}	Emulation probe conversion board necessary when the IE-784046-NS-EM1 is used in the IE-784000-R. Not necessary when the IE-784046-R-EM1 is used.
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
EV-9200GC-80	Socket to be mounted on the board of the target system made for the 80-pin plastic QFP (GC-3B9 type)
ID78K4	Integrated debugger for IE-784000-R
SM78K4	78K/IV series common system simulator
DF784046	Device file for the μ PD784046 subseries

Note Under development

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV series
MX78K4	OS for 78K/IV series

(5) Cautions when the development tools are used

- The ID-78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784046.
- The CC78K4 and RX78K/IV are used in combination with the RA78K4 and DF784046.
- Flashpro II, FA-80GC, and NP-80GC are product of Naito Densei Machida Mfg. Co., Ltd. (TEL: (044)822-3813). Contact an NEC distributor when purchasing these products.
- Host machines and OSs compatible with the software are as follows:

Host Machine [OS]	PC	EWS
	PC-9800 Series [Windows TM] IBM PC/AT and compatible machines	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™]]
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]
RA78K4	Note	0
CC78K4	Note	0
ID78K4-NS	0	-
ID78K4	0	0
SM78K4	0	-
RX78K/IV	Note	0
MX78K4	Note	0

Note DOS based software

APPENDIX B. RELATED DOCUMENTS

Device-related documents

Document	Document No.		
	Japanese	English	
μPD784044(A), 784046(A) Data Sheet	U13121J	This document	
μPD78F4046 Preliminary Product Information	U11447J	U11447E	
μPD784046 Subseries User's Manual - Hardware	U11515J	U11515E	
μΡD784046 Subseries Special Function Register Table	U10986J	-	
78K/IV Series User's Manual - Instruction	U10905J	U10905E	
78K/IV Series Instruction List	U10594J	-	
78K/IV Series Instruction Set	U10595J	_	
78K/IV Series Application Note - Software Basics	U10095J	U10095E	

Development tool-related documents (User's Manuals)

Document		Document No.	
		Japanese	English
RA78K4 Assembler Package	Operation	U11334J	U11334E
	Language	U11162J	U11162E
RA78K4 Structured Assembler Preprocessor		U11743J	U11743E
CC78K4 C Compiler	Operation	U11572J	U11572E
	Language	EEU-961	U11571E
CC78K Series Library Source File		U12322J	_
IE-78K4-NS		On preparation	Planned
IE-784000-R		U12903J	EEU-1534
IE-784046-NS-EM1		Planned	Planned
IE-784046-R-EM1		U11677J	U11677E
EP-78230		EEU-985	EEU-1515
SM78K4 System Simulator Windows Based	Reference	U10093J	U10093E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K4-NS Integrated Debugger	Reference	U12796J	U12796E
ID78K4 Integrated Debugger Windows Based	Reference	U10440J	U10440E
ID78K4 Integrated Debugger HP-UX, SunOS, NEWS-OS based	Reference	U11960J	U11960E

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of the document when designing your system.

Embedded software-related documents (User's Manual)

Document		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Fundamental	U10603J	U10603E
	Installation	U10604J	U10604E
	Debugger	U10364J	_
78K/IV Series OS, MX78K4	Fundamental	U11779J	-

Other documents

Document	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability and Quality Control	C10983J	C10983E
Guide to Prevent Damages for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Quality/Reliability Handbook	C12769J	-
Microcontroller-Related Product Guide - Third Parties	U11416J	_

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of the document when designing your system.

[MEMO]

NOTES FOR CMOS DEVICES-

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

J97. 8

IEBus is a trademark of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in

the United States and/or other countries.

PC/AT is a trademark of IBM Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Some of related document may be preliminary, but is not marked as such. Please keep this in mind as you refer to this information

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.